項	目	長良川河口堰検証専門委員会報告書	国土交通省中部地方整備局・水資源機構中部支社	国土交通省中部地方整備局・水資源機構中部支社 事務局修正案
運	用	堰の最適運用方法を探るためのデータを得るための調査	堰の環境への影響を最小限にするため、堰の上流側に塩水を一滴	堰の運用にあたっては、塩害を起こさせないという本来
		を目的として、諸条件が満たされることを条件に、堰上流	も入れない条件で、更なる弾力的な運用を行う。	の目的の下に様々な分野の学識経験者や長良川流域の関係
		に塩水を入れる運用を一時的に行う。		者等の意見を聞きながら、河川環境に最大限配慮したより
				良い河口堰の運用に努力している。
環境	水質	環境基準は河川の基準と湖沼の基準とがあり、河口堰の	長良川の水は河川の環境基準の類型指定ではA類型であり、水道	同左
		水は法的には河川ではあるが、水の流れが滞留する湖沼型	水源として水質上の問題は発生していない。	河口堰は河川と湖沼の中間的な性格を有しているため、
		となった湛水域の水質が問題となる。環境基準は判断の目		水質調査はBOD と COD の両方の測定を実施している。
		安となるが、それがクリアーされていれば問題は無いとい		
		うことではない。		
		堰上流側のDOの増加は、淡水化による飽和酸素濃度の	河口堰の運用後、堰上流側のDOは淡水化により改善されており、	同左
		増加と浮遊藻類の光合成の結果であり、後者については無	平成 17 年度以降も経年的な変化傾向は見られない。また、底層 DO	クロロフィル a は、平成 17 年以降、東海大橋より上流で
		光層及び無光時間の酸素消費に留意する必要がある。昼間	は夏季に低下しやすい傾向はあるが、フラッシュ操作などの効果も	は経年的に減少傾向にあり、伊勢大橋においても夏季に増
		の観測時の高いDO濃度については藻類の呼吸による夜間	あり、渇水状態においても問題となるような DO の低下は見られな	加は見られるが、最大値は減少傾向にある。近年のクロロ
		の酸素濃度低下を示唆するものであり、問題が無いとは言	L'o	フィルaの状況については、特に問題はない。
		えない。		
		河口堰下流のDOについては、環境基準を満たしておら	堰下流水域(揖斐長良大橋地点)の底層DOは、河口堰運用開始前	同左
		ず、低下(悪化)の傾向がみられている。堰の運用後、い	の平成6年夏季には、小潮頃に塩分成層に伴い周期的に低下してい	
		わゆる「小潮効果」による河口堰下流の無酸素・貧酸素状	た。この傾向は、運用開始後も同様に認められ、年により強弱が見	
		態は、河口堰の運用以前にも観測されているが、堰の運用	られるが、これは流量の多少に関係していると考えられる。ただし、	
		後、特に夏期にその持続時間が長くなっており、河口堰運	底層 DO の低下は、大潮の強混合や大規模出水により速やかに改善し	
		用との因果関係の存在は否定できない。小潮時の貧酸素状	ている。	
		態は、出水により解消されるため、経年的な変化は流量と		
		対照させて解釈する必要がある。		

[※]本資料は、第2回愛知県長良川河口堰最適運用検討委員会資料(蔵治委員作成)をもとに、事務局が作成

項	目	長良川河口堰検証専門委員会報告書	国土交通省中部地方整備局・水資源機構中部支社	国土交通省中部地方整備局・水資源機構中部支社 事務局修正案
環境	堆積物	河口堰の上下流部で、シルト・粘土含量が最も多く、強	長良川の河口域は、河口堰有無によらず、細粒分や有機物が堆積	同左
		熱減量も同様な分布が認められる。同様な観測結果は他の	しやすい場所である。また、過去から平常時の細粒分・有機物質の	
		堰でも得られており、堰に普遍的な現象である。いわゆる	堆積と、出水時の洗掘や砂等の堆積、移動を繰り返しており、堰供	
		軟泥の分布は、局所的ではなく広域的なものであり、長良	用前と比較して一方的に悪化している傾向は見られない。	
		川河口堰のフラッシュ・アウト操作によっても解消されて		
		いない。水資源機構中部支社が示す堆積物の性状と分布の		
		経年変化の解釈には、河口堰運用前後の比較を行うこと、		
		また、運用開始後の変化についても底質の性状に影響する		
		流量との関連を解析することが不可欠であるが、それが示		
		されていない。これらの分析から、堰の運用と堆積物の変		
		化との因果関係は否定できず、また、堰運用後の経年変化		
		についても、改善の兆しは認められず、不可逆的な変化が		
		生じたものと判断せざるを得ない。		
	底生動物	堰下流域のシジミ類は、おそらく、貧酸素化や堆積物の	堰下流水域のヤマトシジミは確認個体数の変動が大きく、夏季に	同左
		変化により、生息密度が減少している。稚貝の放流の効果	増加傾向が見られた。漁業者によるシジミ漁が継続して営まれてい	
		は数値的に示されていない。ゴカイ類およびベンケイガニ	る。堰上流水域のゴカイ類は、平成12年以降ほとんど採集されてい	
		類の河口堰上流における絶滅あるいは極度の減少によっ	ない。堰上流の 9.5km~24.6km については、河口堰の運用が開始さ	
		て、水質浄化や魚類・鳥類の餌資源として果たしていた役	れた平成7年、8年にベンケイガニ類の個体数が減少傾向を示した	
		割(生態系サービス)が失われたものと考えられる。淡水	が、その後の変動は小さい。淡水化した環境において、ベンケイガ	
		化及び緩流化によるオオシロカゲロウ、ユスリカ等の不快	二類の産卵が行われず、また幼生の加入がなくなったためと考えら	
		昆虫の生息密度、及び発生頻度は増加の傾向が認められる。	れる。ユスリカの種類数、個体数の変動は大きいが、特に一定の変	
			化傾向はみられない。	

[※]本資料は、第2回愛知県長良川河口堰最適運用検討委員会資料(蔵治委員作成)をもとに、事務局が作成

項	目	長良川河口堰検証専門委員会報告書	国土交通省中部地方整備局・水資源機構中部支社	国土交通省中部地方整備局·水資源機構中部支社 事務局修正案
環境	魚類	堰運用後の経年変化や、緩流化が遡上や降下に影響を及	河口堰の魚道は稚アユの遡上に対して機能を果たしており、問題	同左
		ぼす可能性が否定できないことから、現時点で、アユの漁	は見られない。河口堰運用後のアユ遡上数は年によって変動し、一	長良川の経年のアユ漁獲量と、全国のアユ漁獲量や、全
		獲の減少を河口堰の運用と無関係とする見解は採用できな	定の変化傾向は見られない。稚アユの遡上に対する河口堰の影響は	国の他河川(利根川、四万十川)、長良川近隣の河川(豊川、
		い。堰上流の流況、水温の変化は、遡上や降下の時期に影	認められない。アユの小型化や遡上の遅れについては、アユの産卵	矢作川、宮川)のアユ漁獲量を比較すると、平成5年頃か
		響し、アユのサイズ等、遊漁に関わる重要な要素に影響を	孵化の場所及び時期など様々な要因が考えられるので、さらに可能	ら同様に減少傾向が認められる。 平成5年以降の長良川に
		及ぼしている可能性もある。一方、長良川における天然ア	な調査について検討すべき。	おける河川漁業漁獲量の減少要因としては、平成5年は多
		ユの小型化の原因としては、放流アユとの競合の影響も大		雨冷夏の影響、その後の冷水病の蔓延やカワウによる食害、
		きく、河口堰運用と直ちに因果付けることは難しい。		KHV病の発生等の要因と、漁業の不振から遊漁者離れが
				起こったことによる。
		サツキマスの市場入荷量は漁獲を直接反映するものでは	サツキマスの入荷数は年によって木曽三川全体で変動が見られ、	同左
		なく、淡水魚の特殊な流通機構が考慮されなければならな	長良川産も同様に変動している。サツキマス遡上数の変化に対する	
		い。河口堰の運用による漁獲の経年変化を議論する資料と	河口堰の影響は見られない。	
		しては適切ではなく、河口堰の運用の影響を否定するもの		
		ではない。		
	ヨシ	掘削や工事によるヨシ帯の消失に対しての代償措置は採	自然再生が行われていない時期(H4)と比較すると、良好な水際延	同左
		られているものの、人工造成、覆砂されている岸部でもヨ	長(干潟、ヨシ原等) は、長良川37%→48% (H22 現在) に回	
		シの着生は思わしくなく、復元は成功していない。	復した。	

[※]本資料は、第2回愛知県長良川河口堰最適運用検討委員会資料(蔵治委員作成)をもとに、事務局が作成

項	目	長良川河口堰検証専門委員会報告書	国土交通省中部地方整備局・水資源機構中部支社	国土交通省中部地方整備局・水資源機構中部支社 事務局修正案
利水	水供給	過去の少雨化傾向は統計的に有意な傾向ではなく、現在 は増加傾向に転じつつある。未来の降雨がどのような傾向	近年の少雨化傾向により岩屋ダムの安定供給可能量は17. 4㎡/s に低下しており、現在はそれを上回る24. 3㎡/s の水利権が許	同左 年降水量の経年変化を示したグラフの赤い直線について
		にあるかは予測不可能である。	可されている。	は、平均的な傾向を示すため最小二乗法を用いて記入した
		TOO ON IS I MIT THE COSO	-3C10C0-00	もの。平成23年度版日本の水資源において、「降水量の多
				い年と少ない年の開きが拡大し、年降雨量の変動幅は増大
				する傾向にあり、近年の傾向は少雨化にある」としている。
		い。需要に対して供給が過剰であることは明らか。	したものであり、ダム計画当時の開発水量に対して、近年20年に2	・・ 長良川河口堰による新規利水(長良導水及び中勢水道)
			番目の渇水年における安定供給可能量は低下している。	と、安定した取水が可能となった北伊勢工業用水の水利権
				 量は、味噌川ダムと阿木川ダム2基分の安定供給可能量に
				相当する。また、実際に木曽川では、渇水による取水制限
				が頻繁に行われている。
	水需要	これまでの水需要予測は過大であった。今後も水需要が	今後の水需要も依然として増加傾向にある。	愛知県の需要想定は、国土審議会水資源開発分科会での
		増加する見込みはない。		審議を経て閣議決定された、木曽川水系における水資源開
				発基本計画で定められている。(愛知県は水需要が漸増する
				と想定)
		平成 6 年のような異常渇水時の対応は、平常時とは別の	平成 6 年のような異常渇水時にも安定供給できるレベルのインフ	水資源開発基本計画では、近年の降雨状況の変化を踏ま
		発想で行うべきである。	ラを常時供給施設として整備しておく必要がある。	えつつ、10年に1回の渇水に対して、安定的な水の利用
				を可能にすることを目標としている。平成6年の渇水時に
				おいては、関係者の協力により、あらゆる手段(既得農水
				等の制限、発電容量からの補給等)が講じられたが、水道
				用水では知多半島の9市5町で最大19時間の断水をは
				じめ、工業用水では愛知県で約303億円、三重県で約1
				50億円の被害が発生した。
		木曽川の成戸 50 m³/s の制限流量 (河川整備計画で維持流	木曽川の成戸 50 m³/s の制限流量は木曾三川協議会において総意	木曽川の成戸 50 ㎡/s の制限流量は木曾三川協議会にお
		量に変更された)は科学的根拠が薄弱であり、代替水源の	のもとに設定された経緯があり、その後の河川環境の状況を踏まえ	いて、この地域全体の総意のもとに設定された歴史的経緯
		一つとして検討できる。	つつ全国的に標準的な手法で定められた、河川整備の目標として、	があり、その後の河川環境の状況を踏まえつつ全国的に標
			木曽川の流水の正常な機能を維持するために必要な流量。	準的な手法で定められた、河川整備の目標として、木曽川
				の流水の正常な機能を維持するために必要な流量。

※本資料は、第2回愛知県長良川河口堰最適運用検討委員会資料(蔵治委員作成)をもとに、事務局が作成

項	目	長良川河口堰検証専門委員会報告書	国土交通省中部地方整備局・水資源機構中部支社	国土交通省中部地方整備局・水資源機構中部支社 事務局修正案
塩害	塩水遡上		シミュレーションしたところ、浚渫を行うと渇水流量相当時には 30km付近まで塩水が遡上すると予測される。渇水流量(28 m³/s)と	河川内の塩分濃度は潮汐、流量によって日々刻々変化し
	農業用水	農業用水が取水していない期間に開門調査を開始する。 農業用水が取水している期間については、水質を監視し、	長良川が塩水化すれば 25km から下流でかつ大江川より東の約 1,600ha の地域の地下水が塩水化する。 塩水を入れたまま河口堰を閉じると堰上流域に塩水塊の残留と底	同左 塩水遡上により、1)取水障害、2)地下水の利用困難、3) 農業被害、4)土地利用の制約、という影響が生じることが 予測されている。
		農業用水に塩水が入る可能性がある場合は調査をやめる。	層 DO の低下が観測された。	

[※]本資料は、第2回愛知県長良川河口堰最適運用検討委員会資料(蔵治委員作成)をもとに、事務局が作成