

取り組みの状況

政策支援の概要

定置用燃料電池

2016年 市場自立化を目指す

業務用

家庭用

・今後の普及が・5万台が普及 期待される (H25.08)

t ·コン

拡大

技術開発(燃料電池)

・コスト要因になっている燃料電池部分の白金 使用量の減少等

導入補助金

- ・量産効果による低価 格化
- ・2016年市場自立化 を目指す

技術実証

・コンビニ、事業所、集 合住宅等での実証

技術開発(タンク等)

低コスト

化

低コスト

化等

先行整

- ·FCVや水素ステーショ ンに使う新材料の開発 等
- ・開発用の試験施設の 整備

規制の見直し

FCV、水素ステーションに関する規制見直し (高圧ガス保安法、消防 法等)

整備補助金

・2015年の燃料電池 自動車の市場投入に 備え100箇所のス テーションの整備

燃料電池車(FCV)

2015年 市場投入予定

水素ステーション

技術開発

実証実験

METI

NEDO

新たな利用可能性の拡大

火力発電高効率化

・火力発電に燃料電池を用いる 「トリプルコンバインドサイクル発電」

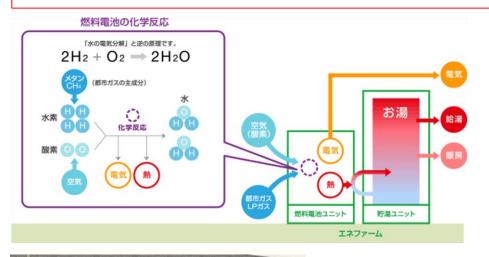
エネルギーキャリア

- Ballion

・再エネ等由来のエネルギーを 水素の形にして貯蔵・運搬が可能

家庭等への給電(V to H)

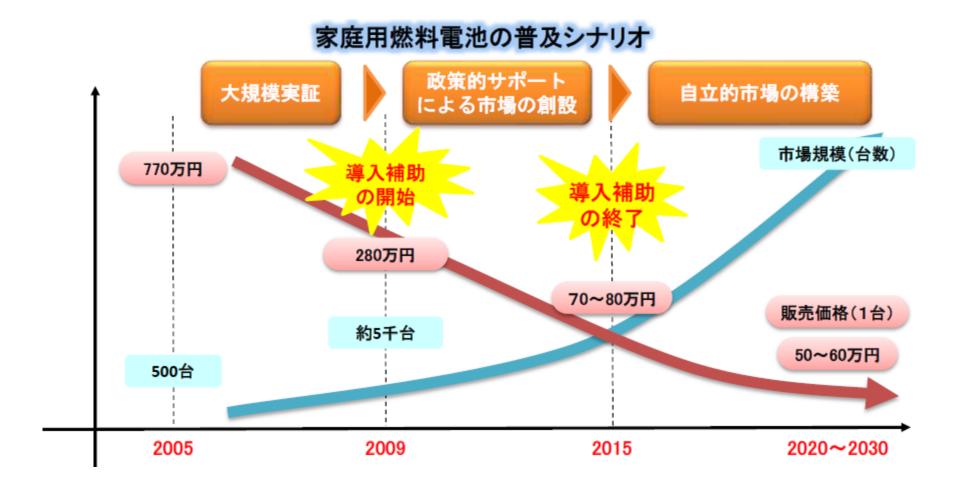
・FCVで発電した電気は家庭への給電 が可能(非常用電源として有用)




取り組みの状況(家庭用燃料電池)

家庭用燃料電池(エネファーム)

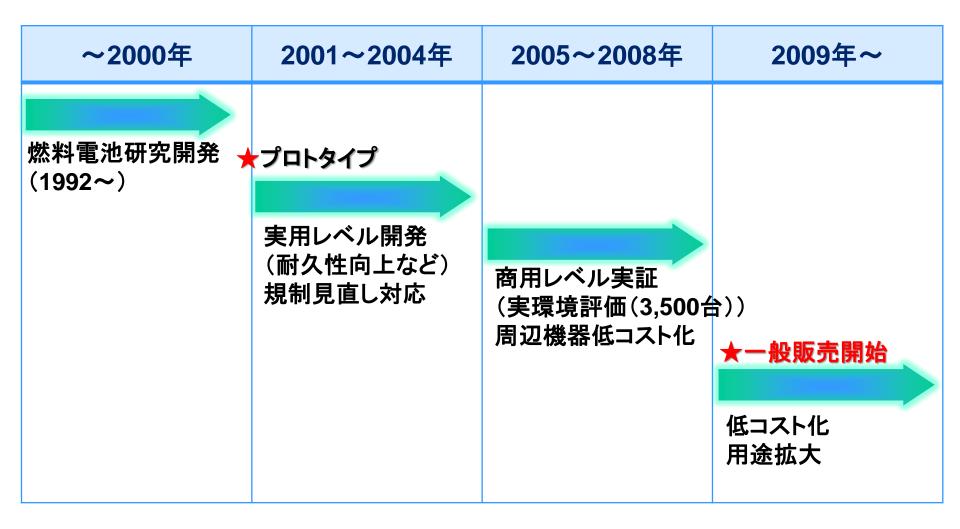
都市ガス・LPガスから取り出した水素と、空気中の酸素の化学反応により発電、同時に発生する熱を給湯などに利用するシステム(2009年:一般販売開始)



家庭用燃料電池システム世界市場見通し

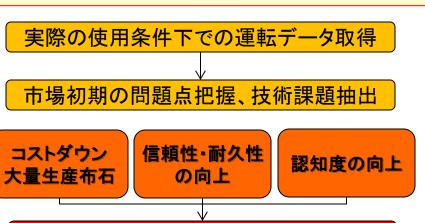
出典:2013年度版燃料電池関連技術・市場の将来展望(富士経済)

家庭用燃料電池普及シナリオ

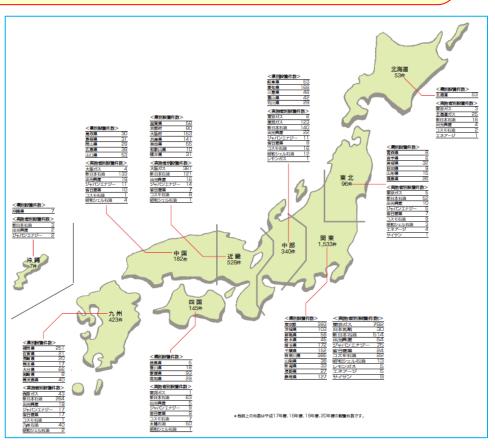


出典:経済産業省 水素・燃料電池戦略協議会資料

家庭用燃料電池の導入に向けた取り組みで



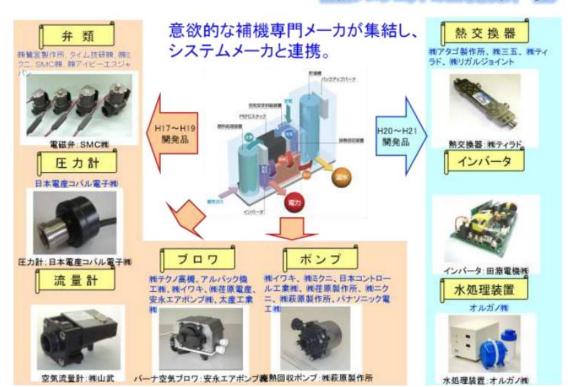
定置用燃料電池大規模実証事業


- >家庭用燃料電池システムを全国各地の住宅に導入し運転デー タを取得(固体高分子形:3,307台/固体酸化物型:223台)
- ⇒安全性、省エネルギー効果を実証。機器性能、信頼性を向上。

家庭用燃料電池システムの早期商用化

事業期間	2005年度	2006年度	2007年度	2008年度
設置サイト数(台)	480	777	930	1120
システム 設置補助金 (円/台)	600万	450万	350万	220万

家庭用燃料電池設置台数推移



家庭用燃料電池設置状況 (出典:新エネルギー財団)

家庭用燃料電池システム周辺機器技術開発。

- ▶エネファームメーカーの協力のもと、周辺機器の求められる共 通仕様書を取りまとめ公表し、周辺機器メーカーの参加を促進。
- ▶周辺機器コストを約1/4に低減。平成20年度には、対象機器の 約7割にプロジェクト成果品が使用。

補機プロジェクトの主な成果(一覧)

各部品毎のコストダウン効果は以下の通り

	2005年度	2009年度
回転機 (ポンプ、ブロア)	14万円	6万円
センサー (圧力計、流量計)	3万円	1. 5万円
弁類	12万円	2万円
電力変換装置 (インバーター)	5万円	2万円
熱交換器	1万円	0. 4万円
水処理装置	5万円	0. 4万円
その他(継手など)	12万円	1. 5万円

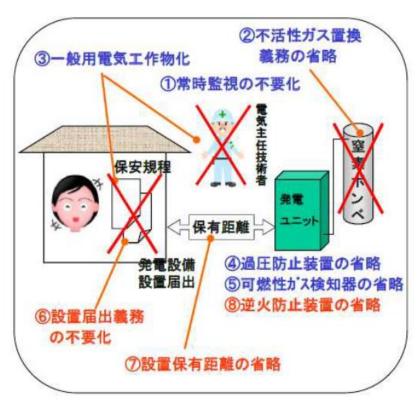
52万円

13.8万円

家庭用燃料電池システム規制見直し

- NEDO「水素社会構築共通基盤整備事業」(2005~2009年度)において、取得したデータを活用し、 PEFC、SOFCともに規制見直しは完了。
- 家庭用PEFC、SOFCの導入・設置が容易かつ円滑になるとともに、設置・運転費用やシステム価格の低減が進展。

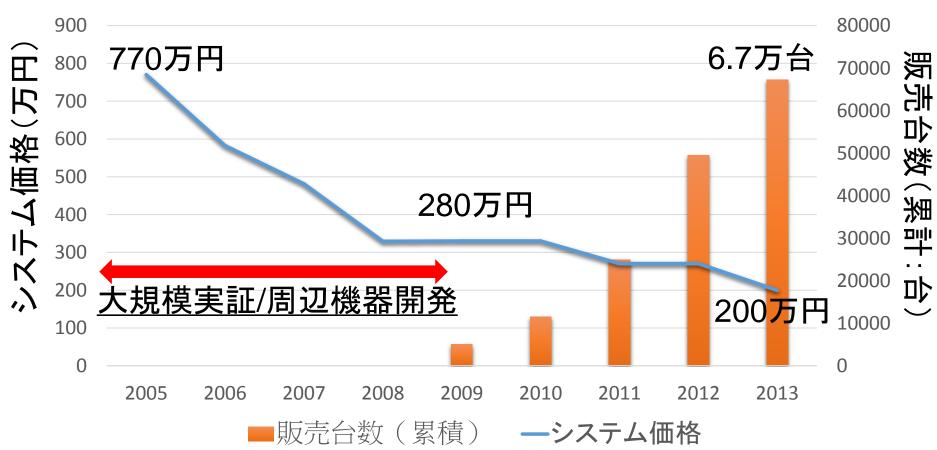
主な規制見直しの概要


電気事業法

- ①常時監視が必要
- ②不活性ガス置換義務
- ③自家用電気工作物
 - •電気主任技術者選任義務
 - •保安規程届出義務
- ④加圧防止装置が必要
- ⑤可燃性ガス検知器が必要

消防法

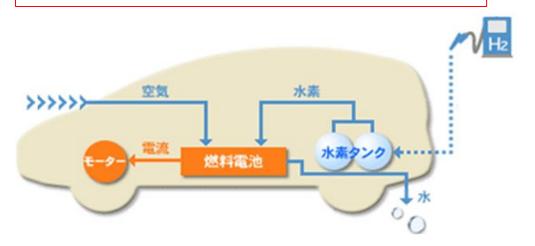
- 6設置届出義務
- ⑦設置保有距離が必要
- ⑧逆火防止装置が必要



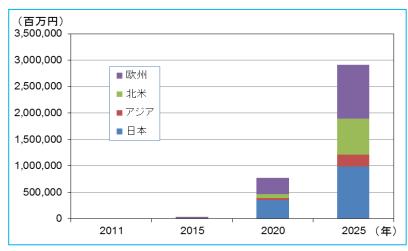
エネファーム価格・導入量推移

システム価格は1/4に低下。累計販売台数は約7万台に。

販売台数はコジェネレーション・エネルギー高度利用センターのデータを利用。2013年度は9月までの数値 システム価格について2009年までは、NEDO「定置用燃料電池大規模実証研究事業」より引用。2009年以降は、報道よりNEDO作成。



取り組みの状況(燃料電池自動車)


燃料電池自動車

燃料電池自動車: 究極のエコカー

FCVの概念図(出展:JHFCホームページより)

燃料電池自動車世界市場見通し

出典:2013年度版燃料電池関連技術・市場の将来展望(富士経済)

- ▶ 高いエネルギー効率
- ▶ 走行時に排出するのは水のみ
 - → CO₂、NOx、CO、SPMの排出ゼロ
- ▶ ガソリン自動車と同等の利便性
 - → 一回充填で500km走行、3分間で満充填可能
- 家庭への給電も可能(満充填で5日間程度)

燃料電池自動車の歴史

2015 FCV一般販売 開始 2013 FCV共同開発発表

2011

日 FCV普及に関する共同声明

2002

日本 実証事業開始

2000

米加州実証事業開始

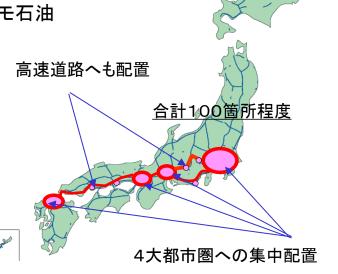
1994

世界初公道走行FCV

1993 加州ZEV規制

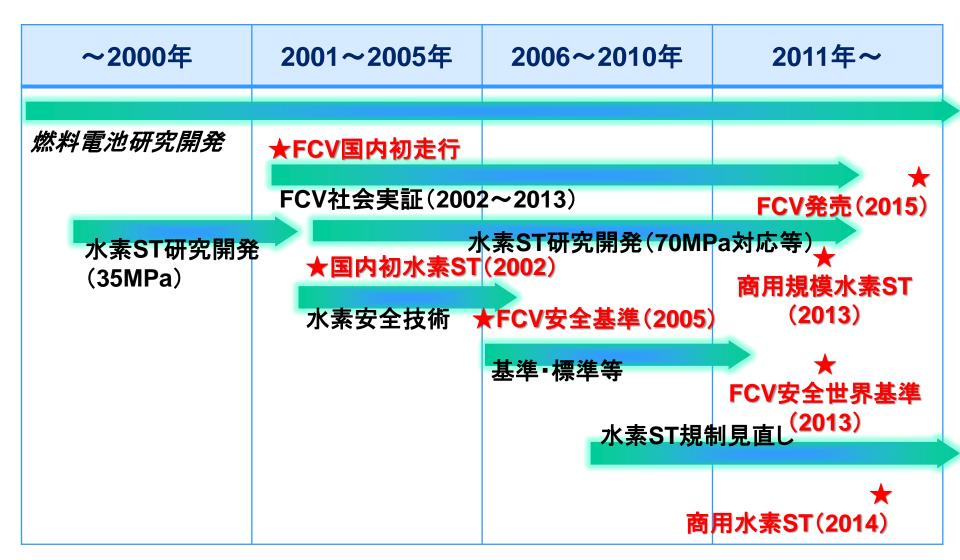
FCV・水素ステーション普及シナリオ

- ●燃料電池自動車(FCV)の導入に当たっては、インフラとして水素ステーションの整備が進むことが必要(「ニワトリとタマゴ」)。
- ●2011年1月、
 - ①燃料電池自動車を2015年から市場に導入すること
 - ②それに先立ち4大都市圏(首都圏、中京、関西、北部九州)を中心に 100箇所程度の水素ステーションを整備すること について、自動車会社3社とエネルギー事業者10社が共同声明を発表。


<13社>

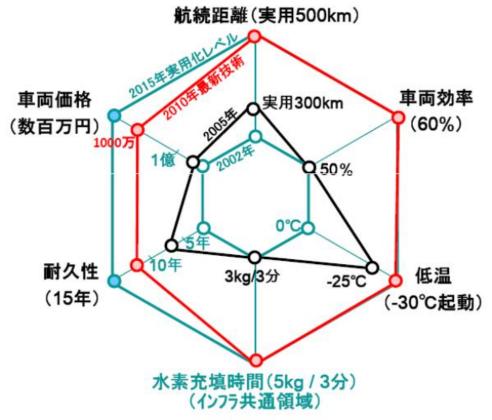
自動車会社:トヨタ、日産、ホンダ

石油会社: JX日鉱日石エネルギー、出光、昭和シェル、コスモ石油


都市ガス会社:東京ガス、大阪ガス、東邦ガス、西部ガス

産業ガス会社:岩谷産業、大陽日酸

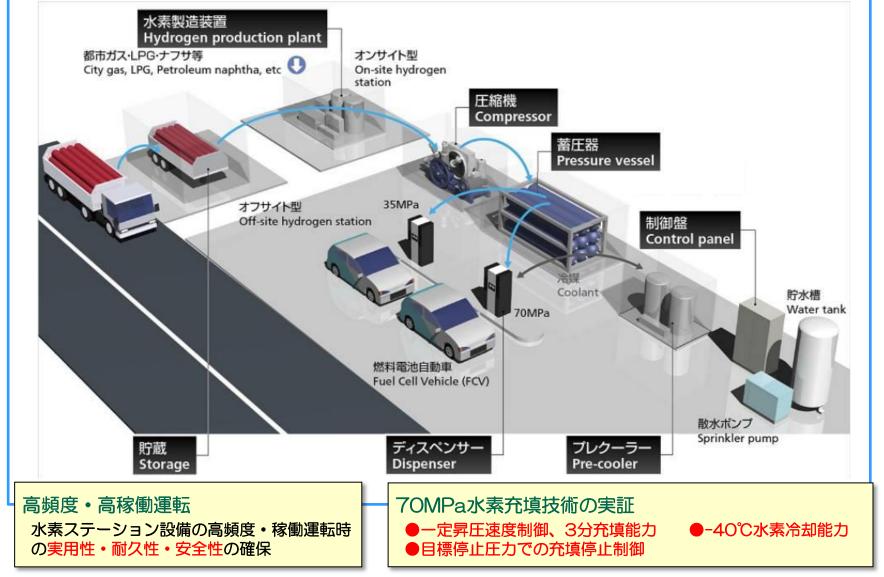
燃料電池自動車の導入に向けた取り組みで



燃料電池技術の進展

FCVの技術課題に対する解決の進捗状況

JHFCでの実証を通じ、FCVの性能はほぼ実用化レベルに達している。 残る課題はFCV価格と水素ステーション建設コスト。



FCV開発状況(トップランナー)

※ 実証試験結果,各社発表資料,ヒアリングによる推定

水素ステーション技術の開発

水素ステーション・技術の開発

- •70MPaという超高圧水素への対応のための開発
- ・2013年、商用規模水素ステーションを建設

45MPa水素トレーラー

海老名市: 日本初となる本格的

商用規模水素ステーション(H25.4)