【別添資料】

蒲郡市竹谷町地内土砂崩れの蒲郡支線への影響に関する

土質調査試験結果等報告書

令和7年5月30日

土砂崩れ現地調査チーム 水 路 専 門 部 会

目 次

1. 調査目的

2	•	調]査	内	容		•	•	•		•		•				•		•	•	•	•					•	•	1
3	•	調]査	結!	果		•		•			•	•				•	•	•				•			•			2
	(1)	現	地位	の地	質	及	び	地	形	•																	•	2
	(2)	現	地位	り唐	辽	l地	表	踏	査									•						•				3
	(3))	管	水品	各近	接	部	の	地	形	等	調	査																6
	(4))	管	水品	各唐	辽]地	盤	の	透	水	係	数	及	び	±	質	調	査		•	•	•	•					16
	(5))	管	水足	各唐	辽	!斜	面	の	安	定	性	1=	関	す	る	土	質	調	査									19
	(6))	航	空し	ノ ー	. リ	<u>*</u>	測	量	結	果	等	に	ょ	る	周	辺	斜	面	の	状	況	確	認					24
4		±	質	試馬	倹紀	拝	1																						29
	(1))	土	質7	ドー	. ıJ	ン	グ	往	状	図																		30
	(2)	現	場道	透水	討	譲	結	果	(ボ		IJ	ン	グ	部)			•	•	•	•	•	•				37
	(3))	土;	質記	式験	紀	果	_	覧	表	(ボ	_	IJ	ン	グ	No.	1)											42
	(4))	土	質言	式験	紀	果	_	覧	表	(ボ	<u> </u>	IJ	ン	グ	No.	2-	2)										50
	(5))	土	質記	式験	紀	果	_	覧	表	(ボ	_	IJ	ン	グ	No.	3-	1)										58
	(6))	土;	質記	式験	紀	果	_	覧	表	(斜	面	部)									•					65
	(7))	土	の-	一面	i⊎		断	試	験	結	果	(斜	面	部)												74

1. 調査目的

蒲郡支線が埋設されている周辺地盤の状況や力学的な特性を確認するため、以下の 目的で調査を行った。

(1) 周辺地山の変状確認 (周辺地表踏査、航空レーザー測量結果による確認)

蒲郡支線周辺の地山の変状(地すべりの痕跡等)を把握するため、現地を踏査して直接目視にて変状を確認するとともに、LPデータによる高精度な地形データでも変状を確認する。

(2) 管水路近接部の地形等確認

管水路と土砂崩れ源頭部の地形的な関係を把握するため、近接部の地形・形状を 確認する。

(3) 管水路周辺地盤の透水係数及び土質調査

雨水の地下への浸透能を確認するため、管水路周囲の埋戻土(購入土)の透水性と地山(まさ土)の透水性を確認するとともに物性値を確認する。

(4) 管水路周辺斜面の安定性に関する土質調査

管水路周辺の土壌を確認するため、試料採取(サンプリング)を行い、一面せん 断試験を実施して、物性値を確認する。

2. 調査内容

以下に示す内容の調査を実施した。調査の範囲、位置などについては、各項目の結果のところにて記載する。

(1) 周辺地山の変状確認 (周辺地表踏査、航空レーザー測量結果による確認)

- ① 現地の周辺地表踏査 蒲郡支線周辺で踏査を実施し、地形や植生の変状等について確認する。
- ② 航空レーザー測量結果等による周辺斜面の状況確認 愛知県が令和元年に計測した LP データを用いて、蒲郡支線周辺の地形の変状 を確認し、その変状箇所の現地状況(地表踏査の結果)、航空写真による土地利 用状況との関連を確認する。

(2) 管水路近接部の地形等調査

蒲郡支線近接部の地形形状を確認し、管水路との源頭部の離隔距離の計測、パイピングや流水の痕跡の有無、付近に存在する穴の位置・直径・深さなど、土砂崩れ源頭部の状況について確認する。

(3) 管水路周辺地盤の透水係数及び土質調査

- ① オーガーボーリング 4箇所(埋戻し部:2箇所、地山部:2箇所)
- ② 現場透水試験 4回埋戻し部 埋戻土(購入土)1×1箇所、

地山部 マサ土1×3箇所

③ 室内土質試験(粒度、含水比、土粒子の密度試験)

(4) 管水路周辺斜面の安定性に関する土質調査

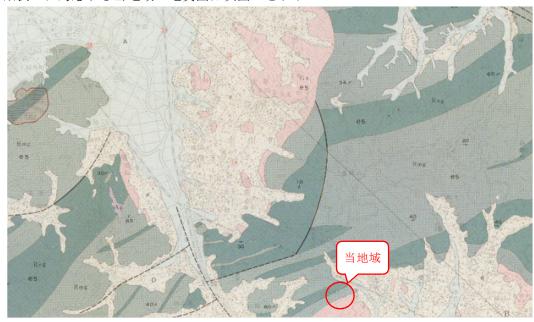
- ① サンプリング (φ75mm以上) 1 (斜面地山3箇所)
- ② 室内土質試験(粒度、含水比、土粒子の密度試験)
- ③ 一面せん断試験 4試料(飽和度高め3試料、自然状態の低い飽和度1試料)

3. 調査結果

(1) 現地の地質及び地形

1) 地質状況

蒲郡周辺の「三河山地」における地質は大きく以下の2つに大別できる。


- ① ジュラ紀の堆積岩類が前期白亜紀に沈み込みにより広域変成作用を被って生成された「領家変成岩類」。
- ② 領家変成岩類の形成後にマグマが貫入してきてそのマグマが地下深部でゆっくり冷却されて形成された巨大な岩体である「領家花崗岩類」。

当地域の地質については、「愛知県土地分類基本調査の地質図(岡崎)」によれば、中生代の「領家花崗岩類」と「領家変成岩類」の境界付近に当たる。(**表**-1赤字)

	地質的	寺代	地形面	地層·岩石名	主な岩質	表層地質分類
		沖積世	沖積面 —	沖積層	礫·砂·粘土	
	第		低位面 一中位面	低位段丘堆積層 (大平層)	儝	未固結堆積物
新	四紀	洪積世	(碧海面) 一 高位面 一	中位段丘堆積層 (碧海層)	礫・砂・シルト	
生代		洪恒正	最高位面一	高位段丘堆積層 (仁木層·細川層)	礫	
			拟同证阻	明大寺層	礫	
	新第	鮮新世		阿知和層 (矢田川累層)	礫・砂・シルト	半固結堆積物
	三紀	中新世		岡崎層群	礫岩・砂岩・シルト岩	固結堆積物
				半花崗岩類		脈岩
中生代	白亜紀			花崗岩質岩 (領家花崗岩類)	黒雲母花崗岩 白雲母·黒雲母花崗岩 片麻状花崗岩 片麻状花崗閃緑岩	深成岩
				領家変成岩類	雲母片麻岩 珪質片麻岩	变成岩

表-1 地質系統表 (愛知県土地分類基本調査より引用)

※表-1に対応する当地域の地質図は次図のとおり

※ 領家花崗岩類、領家変成岩類について

- 1. 「領家花崗岩類(花崗岩質岩石)」(表層地質分類:Gr)
 - ・「武節花崗岩」と「片麻状花崗岩」に区分される。
 - ・当地域には「片麻状花崗岩」が分布し、一部は「片麻状花崗閃緑岩」である。
 - ・「片麻状花崗岩」は灰白色で粗粒、片状構造を持ち、片理が明らかである。
 - ・「片麻状花崗閃緑岩」は一般に灰色で粗粒、片理をもった片状構造を成す。

2. 「領家変成岩類」

- ・「珪質片麻岩」と「雲母片麻岩」からなる。
- ・当地域では「雲母片麻岩」が分布する。
- ・「雲母片麻岩」 (表層地質分類: Rmg) は、灰色~暗色、細~中粒で、片理の明らかな縞状構造をなす。

※ 当地域における風化状況について

- 「花崗岩類」は一般に風化が進んでいる。
- ・「雲母片麻岩」は珪質片麻岩に比して風化は進みやすいが、花崗岩ほど深層に まで風化が及ぶことはない。

(2) 現地の周辺地表踏査

現地の調査結果を図-1に示す。現地調査は当該地の地質構造のほか、湧水の有無 やその痕跡、地形の変状の確認を主な着目点として実施した。

当地は領家花崗岩類と領家変成岩類の境界付近に当たるが、現地では領家花崗岩類の片麻状花崗岩を確認した。山腹の一部では硬質な岩体も確認されたが、表層の地質は概ね調査範囲全域にわたって強く風化を受け手掘りで容易に掘り込めるほどに軟質化が進行した強風化花崗岩よりなることが確認された。

また、調査範囲内においては、全域が花崗岩よりなり、地質境界は見られなかった。 さらに花崗岩は極めて強く風化しており、地表に節理やコアストーンなどは残存して いなかった。

なお、調査範囲の斜面は前述のように、全体としては南~南東に約30°弱で傾斜する山腹斜面である。斜面状況として以下の状態が確認された。

- ① 崩壊斜面下方にはみかん畑の造園のため人為的に作られた段差地形が見られるが、後述する空中写真によれば1977年の写真では、崩壊前はみかん畑の段差は当該崩壊地内の一部に連続していた。
- ② 竹林は全体的に放置されており、立ち枯れた竹と若い竹が密集して林立している。
- ③ 崩落崖の東方には小規模な段差地形が断続的に分布している(極小規模な表層のすべりの可能性がある)
- ④ 高さ数 10cm、幅数 10cm~1m 程度の極小規模な小崖が斜面のいたる所に分布している。
- ⑤ 山腹下方には成因不明の地表から斜面内に斜め下に伸びる穴(径 0.2m, 奥行き 1.2m)があるが、湿った様子や水が滴っている様子はない。
- ⑥ 崩壊斜面の側壁には竹の地下茎跡と考えられる穴が観察される場合がある。
- ⑦ 管水路や21号空気弁など付帯施設周りをはじめ、調査範囲に湧水箇所やその痕跡は認められなかった。
- ⑧ ③および④の様な微地形のほか、特筆すべき変状は確認されなかった。

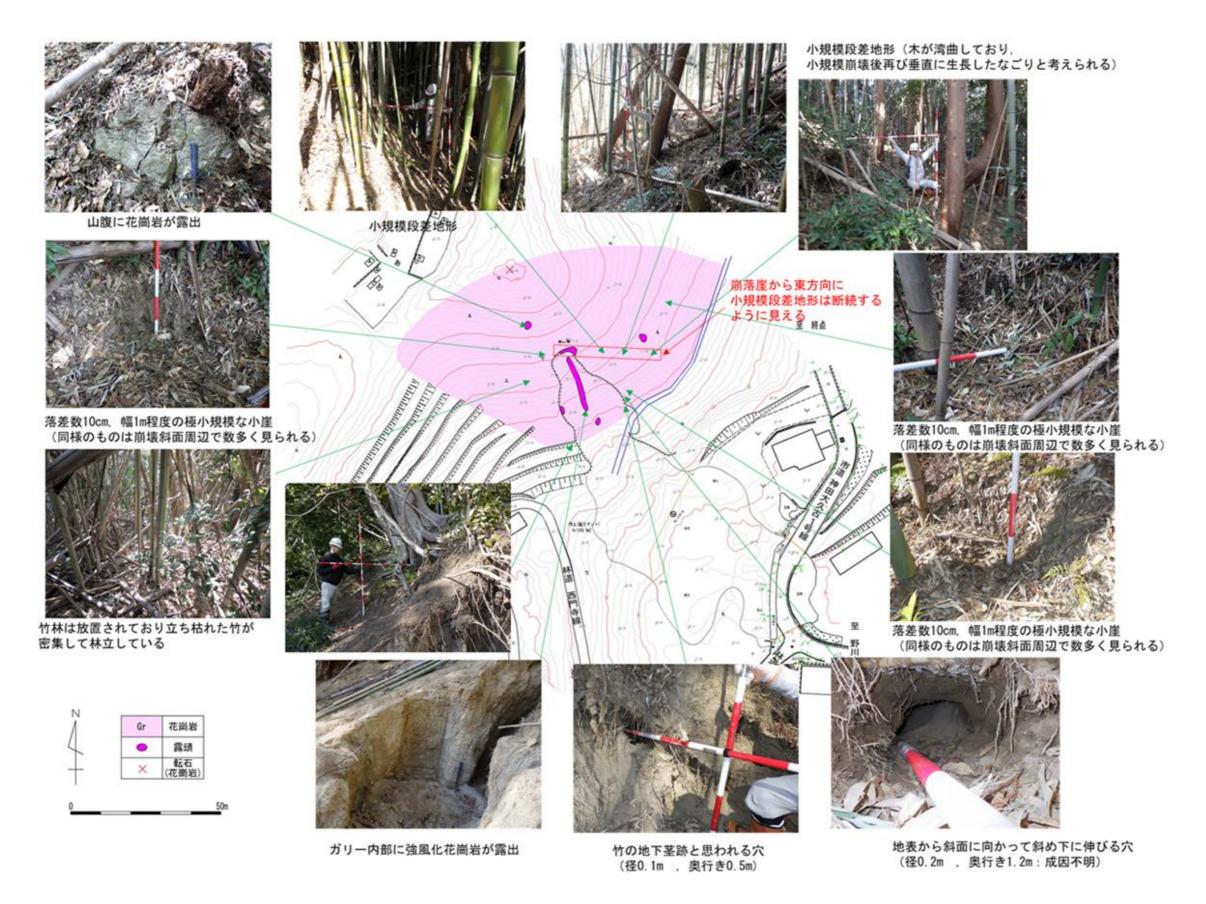


図-1 現地調査結果

(3) 管水路近接部の地形等調査

土砂崩れ源頭部の状況写真及び撮影の位置図を図-2~図-10に示す。この調査の結果、以下の状況が確認された。

- ① 源頭部に見られる崩落崖の表面には、パイピングの跡や、部分的な土砂の流出跡、水 みちとなっていたような割れ目や亀裂は認められなかった。
- ② 崩落崖では表層の数 cm 程度には主として砂質シルトよりなり、植物根や ϕ 1~2cm 程度の礫を含む地山と想定される土層が分布している。その下位は強風化花崗岩(まさ土)となる。
- ③ 表層より 0.3m 程度の区間には竹の根茎がみられる。
- ④ 崩落崖では地山の砂質シルト層の下位には強風化花崗岩(まさ土)が露出する。強風 化花崗岩には割れ目や亀裂の跡が確認されるが、それらは細粒分で癒着しており、開 口していない。
- ⑤ 崩落崖の表面に地表部を頭部とするガリが形成されているが、地表面には流水跡は 見られず、ガリは崩落の跡に形成されたものである。
- ⑥ 源頭部には、φ15~20cm、深さ70cm程度の穴が確認されたが、その内部には湿った 様子や水が溜まっている様子はなく、水みちではない。
- ⑦ 崩落崖の下には竹が生えていた状態を保持した土塊が残存している。崩壊が源頭部 より生じていたとするとこのような土塊は流下し、残存しないと考えられる。
- ⑧ 空気弁周辺に流水跡は見られない。

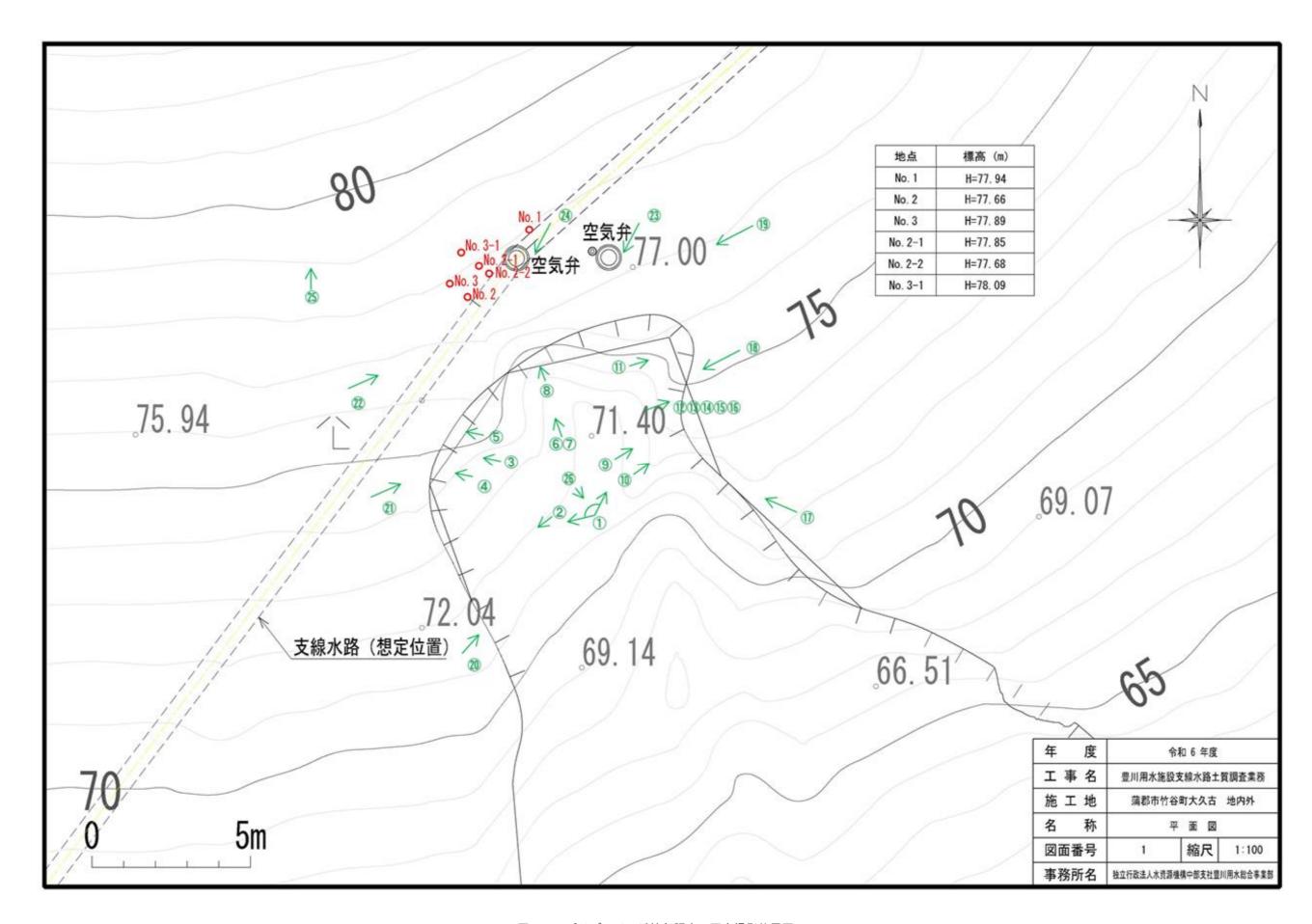
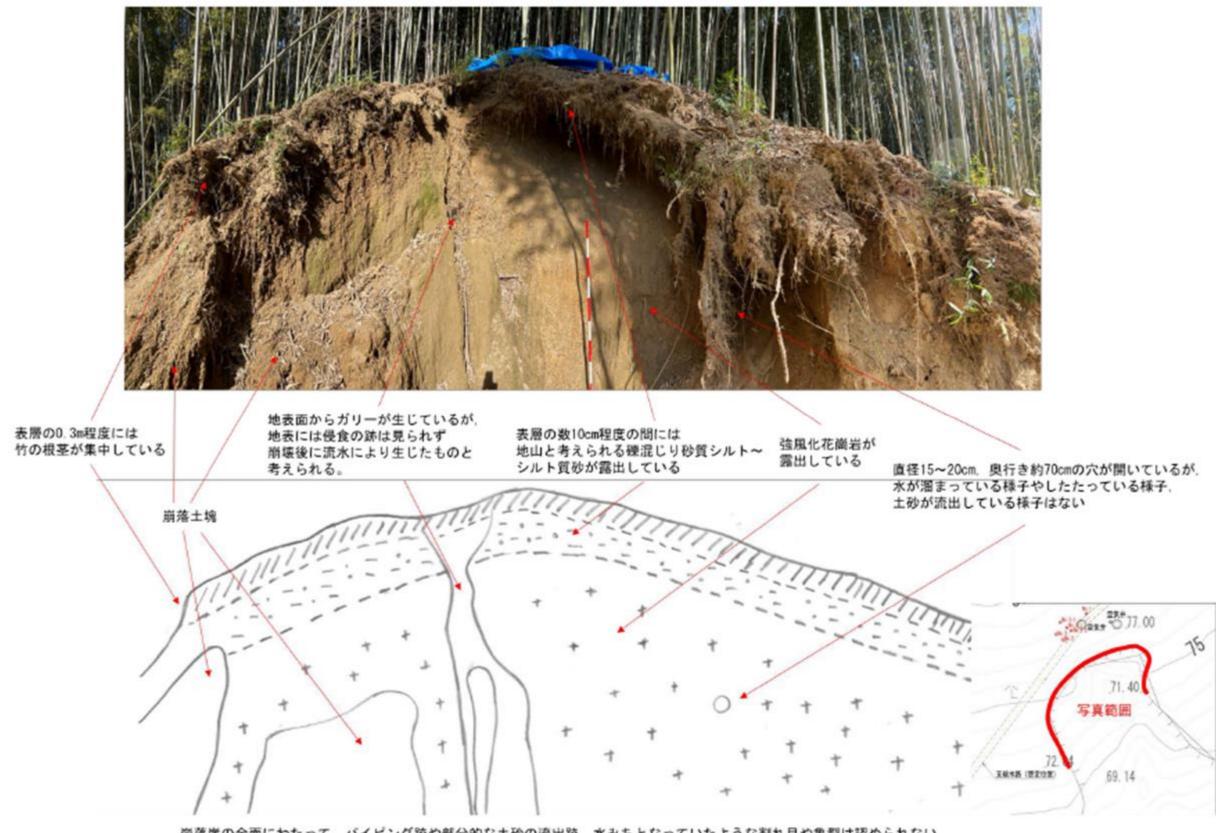



図-2 パイプライン近接部調査 写真撮影位置図

崩落崖の全面にわたって、バイビング跡や部分的な土砂の流出跡、水みちとなっていたような割れ目や亀裂は認められない。

図-3 源頭部状況写真およびスケッチ

図一4 源頭部状況写真2

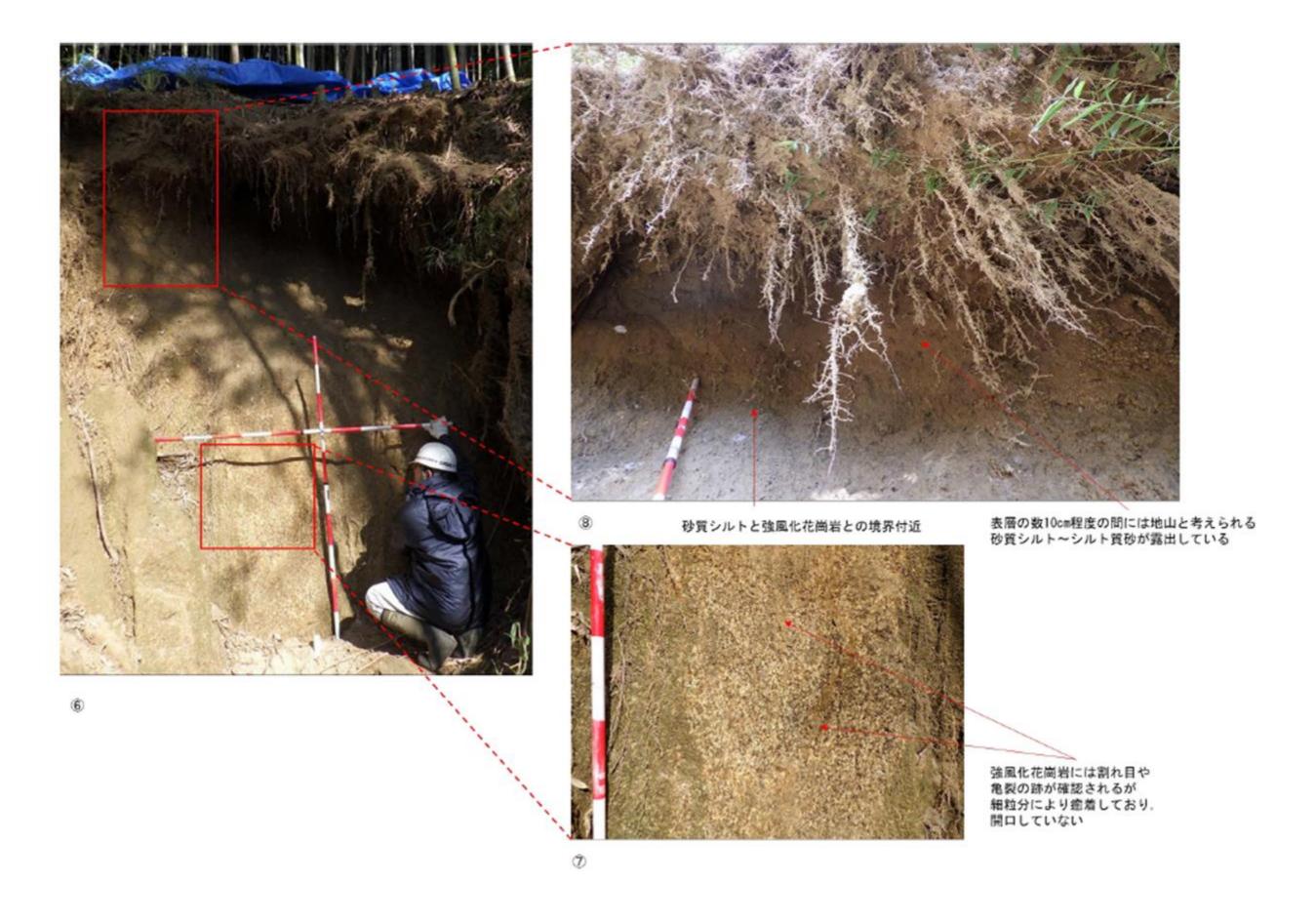


図-5 源頭部状況写真3

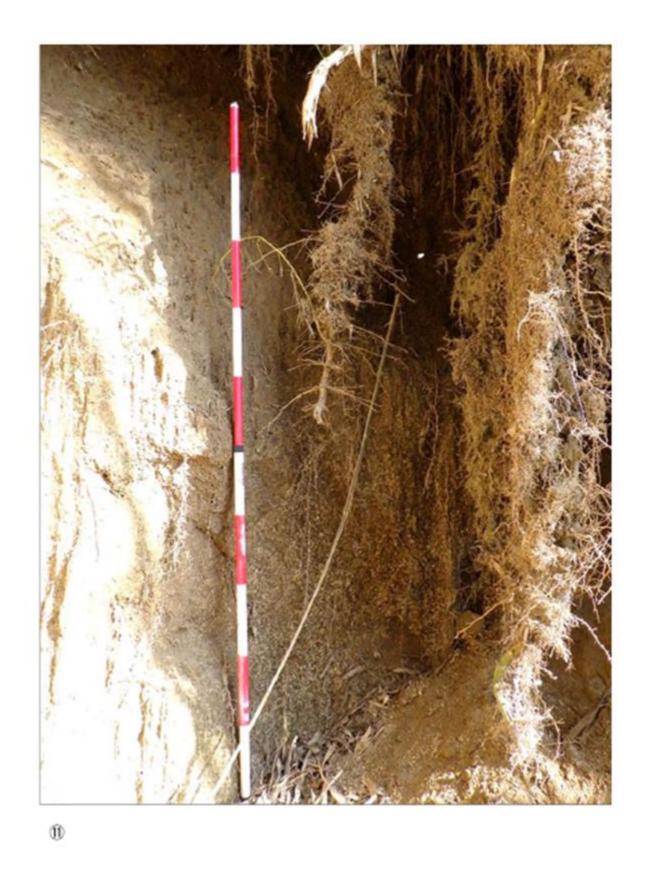


図-6 源頭部状況写真4

直径15~20cm, 奥行き約70cmの穴が開いているが、水が溜まっている様子やしたたっている様子。 土砂が流出している様子はない

図-7 源頭部状況写真5

地表面にガリーなどの流水跡は見られない

図-8 源頭部状況写真6

地表面にガリーなどの流水跡は見られない

図-9 源頭部状況写真7

空気弁付近から斜面下方に流水跡は見られない

恋落差数10cm 幅1m程度の極小規模な小崖

空気弁付近から斜面下方に流水跡は見られない

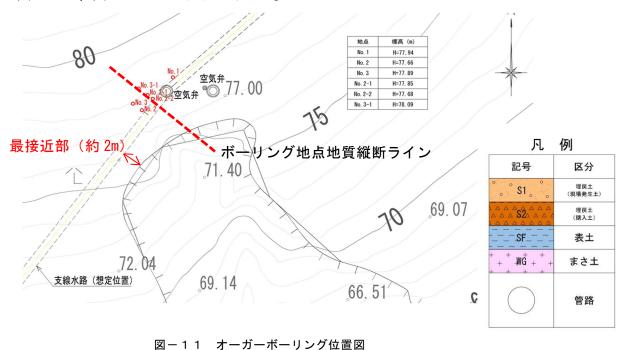
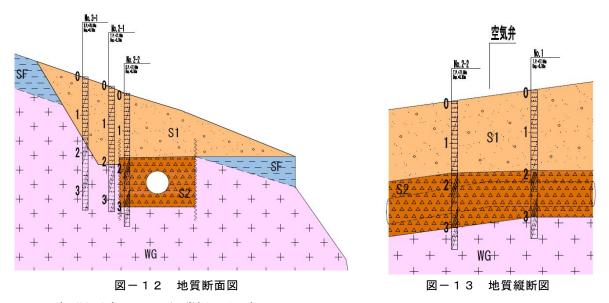

③生えていた状態の竹を残す土塊 生えていた状態を保っている ブルーシートで養生をされる際に伐採されたと考えられる

図-10 源頭部状況写真8


(4) 管水路周辺地盤の透水係数及び土質調査

① オーガーボーリング

オーガーボーリングの実施位置を図-11に示す。ボーリングの結果については、図-12、図-13のとおりであった。

※No. 2はGL-1.4mで障害物にあたり掘進不能。No. 3はGL-1.1mで掘進不能であった。

1) 埋戻土:シルト礫混じり砂

細砂を主体として、当該地の地質(花崗岩)に由来しない円礫や、花崗岩であっても角ばっており人為的に埋戻されたまたは攪乱されたと推定される礫を散在的に含む。基質の砂は地山のまさに由来していると考えられ、地山のまさ土と類似する。含水は少ない。表層の 0.2~0.3m には地山の表土層と同様に竹の地下茎が網目状に張っている。

2) 基礎材:シルト混じり礫質砂

当該地の地質(花崗岩)に由来せず、人為的に搬入され埋土として利用されたと断定できる土層である(管水路の基礎材)。 ϕ 2~5mm 程度の細礫を多量に含むシルト混じり砂であり、基底部に ϕ 5cm 程度の当該地の地質(花崗岩)に由来しない角礫を含む場合がある。層厚は 1.1~1.3m である。互いに近接したボーリング孔である No. 2-2 でみられ No. 2-1 で見られないことから限られた分布をなしていると考えられる。

3) まさ土:シルト質砂

まさ土である。オーガーボーリングで採取された試料は乱されているため、シルト分を多く含む粒径均一な細砂として採取される。含水は少ない。

② 現場透水試験

現場透水試験は3孔において合計4深度で実施した。その結果を表-2に、既往文献の透水性と土質区分関係を表-3に示す。

当該試験結果で得られた各透水係数の評価は「中位」~「低い」となるが、購入土を使用した埋め戻し土と周辺地山であるまさ土は同程度の透水性である。

調査孔	深度	土質	透水係数 k	透水性の
	(GL-m)		(m/s)	評価
No. 1	3.00~3.30	シルト質細砂(まさ土)	2.19×10^{-5}	中位~低い
No. 2-2	2.70~3.00	シルト混じり礫質砂 (埋戻土(購入土))	3.09×10^{-5}	中位〜低い
No. 2-2	3. 20~3. 50	シルト質細砂(まさ土)	8. 48×10^{-6}	中位~低い
No. 3-1	3. 20~3. 50	シルト質細砂(まさ土)	2. 11×10^{-5}	中位〜低い

表一2 現場透水試験結果一覧表

表-3 透水性と土質区分

透水係数k (m/s) 10-5 10-8 10-4 10-3 10-11 10-10 10-9 10-7 10-6 10-2 10-1 100 低 VV ф VY 実質上不透水 非常に低い 饭 15 透水性 砂および磔 微細砂、シルト、 |GW| |GP| 清浄な碟 粘性土 対応する土の種類 砂ーシルトー粘土混合土 ISWI ISPI IGWI IGPI IC! |SF| [S-F] |M| G-M 元水位透水試験 特殊な変水位透 透水係数を直接測 特殊な変水位透 变水位透水試験 水試験 水試験 定する方法 透水係数を間接的 清浄な砂と碟は粒度と間隙比から計算 圧密試験結果から計算 なし に推定する方法

【地盤調査の方法と解析, p. 488, 地盤工学会, H25.3 に加筆】

③ 室内土質試験(粒度、含水比、土粒子の密度)

各オーガーボーリング孔から採取した試料で行った物理試験を実施した。その結果を表-4に示す。

埋戻土(現場発生土)は一般的な砂質土の範囲にあった。埋戻土(購入土)は含水 比はやや低めの値を示しているが、含水比、土粒子密度の値は一般的なまさ土の範囲 にあった。

表一4 物理試験結果一覧表

	土質試験	1	土粒子の密度試験	土の含木比試験				の粒度試	験(フルイ	+沈降分	升)			一面也	が断試験			
調査孔	試料名	試験区間 (GL- m)	土粒子の密度 P。 (g/cm ³) 試験値	自然含水比 ロ _n (%) 試験値	石分 (%)	雅分 (%)	砂分 (%)	シルト分 (%)	粘土分 (%)	最大粒径 (mm)	均等係数 U _c	20%粒径 D20 (mm)	50%粒径 D ₅₀ (mm)	c (kN/m²)	φ (°)	地盤材料の分類名 (分類記号)	分類 環灰士(現場発生士) 環反士(第八士) まさ土 環反士(現場発生士) 環反士(環外人士)	備考
	No.1-A	1.00~1.10m	2.667	12.8	-	13.6	55.5	19.7	11.2	19.0	110.0	0.021	0.2500	-	-	礫まじり粘性土質砂(SCs-G)	埋灰土(現場発生土)	
No.1	No.1-B	2.00~2.10m	2.656	6.0	-	25.5	58.2	10.9	5.4	9.5	50.0	0.1	0.7000	_	-	粘性土質礫質砂(SCsG)	埋戾土(購入土)	
	No.1-C	3.00~3.10m	2.762	16.1	-	8.3	57.1	22.3	12.3	19.0	138.0	0.023	0.1800	-	-	礫まじり粘性土質砂(SCs-G)	まさ土	
	No.2-2-A	1.00~1.10m	2.694	14.8	-	15.4	54.8	19.3	10.5	9.5	109.0	0.024	0.2700	-	-	粘性土質礫質砂(SCsG)	埋灰土(現場発生土)	
No.2-2	No.2-2-B	2.00~2.10m	2.673	7.1	-	29.4	55.2	11.0	4.4	19.0	39.4	0.13	0.7800	-	-	粘性土質礫質砂(SCsG)	埋戻土(購入土)	
	No.2-2-C	3.00~3.10m	2.754	9.3	-	14.1	64.7	13.4	7.8	9.5	57.0	0.065	0.3700	1.77	-	礫まじり粘性土質砂(SCs-G)	まさ土	
N- 2 1	No.3-1-A	1.00~1.10m	2.751	14.9	-	19.4	47.6	19.6	13.4	19.0	-	0.02	0.2200	-	-	粘性土質礫質砂(SCsG)	埋戾土(現場発生土)	
No.3-1	No.3-1-B	2.00~2.10m	2.830	12.8		3.7	69.0	20.0	7.3	9.5	33.0	0.042	0.2200		_	粘性土質砂(SCs)	まさ土	

表-5 代表的な土の含水比、土粒子密度、湿潤密度の測定例

土の種類	沖積粘土	洪積粘土	砂質土	関東ローム	泥炭	まさ土	しらす
含水比w(%)	50~80	30~60	10~30		110~1300	6~30	15~50
土粒子密度 ρ_s (g/cm³)	2.5~2.75	2.5~2.75	2.6~2.8	2.7~2.9	1.4~2.3	2.6~2.8	2.3~2.5
湿潤密度 ρ_t (g/cm³)	1.5~1.8	1.6~2.0	1.6~2.0	1.3~1.5	0.8~1.3	1.5~2.0	1.0~1.7

【土質試験 基本と手引き, p.17, 地盤工学会, H23.2に加筆】

(5) 管水路周辺斜面の安定性に関する土質調査

① サンプリング

サンプリング位置を図-14に示す。なお、サンプリング対象の土は乾燥しており、 非常に崩れやすく、極軟質であった。このため、高さ10cm程度の塩ビ管(サンプラー) は、容易に土層中に押し込むことができた。

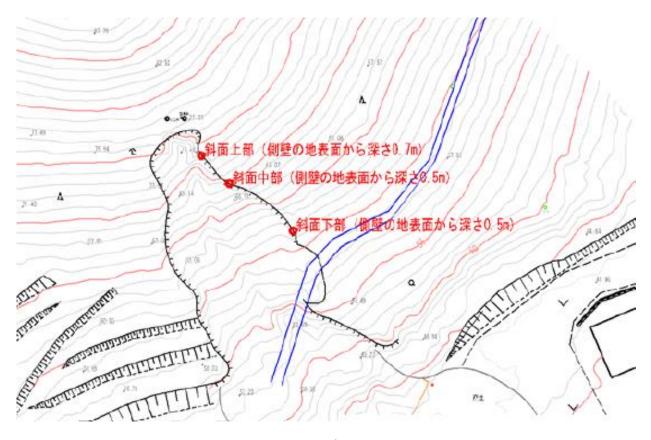


図-14 サンプリング位置図

写真-1 サンプリング状況 (左から斜面上部、斜面中部、斜面下部)

② 室内土質試験(粒度、含水比、土粒子の密度)

①で採取した試料を用いて、物理試験を実施した。その結果を表-6に示す。なお、まさ土としては、一般的な含水比、土粒子密度の値を示していた。

表-6土質試験結果一覧表

土質詞	試験種	土粒子の密度試験				土	の粒度試	験(フルイ	+沈降分村	折)					
調査孔	試料名	土粒子の密度 ρ _s (g/cm ³) 試験値	自然含水比 (3/n (%) 試験値	石分 (%)	碟分 (%)	砂分 (%)	シルト分 (%)	粘土分 (%)	最大粒径 (mm)	均等係数 Uc	20%粒径 D20 (mm)	50%粒径 D ₅₀ (mm)	地盤材料の分類名 (分類記号)	分類	備考
	斜面上部A	2.744	7.2	-	46.7	40.5	7.5	5.3	9.5	66.7	0.19	1.7000	粘性土まじり砂質礫(GS-Cs)		飽和度高め
斜面	斜面中部A	2.748	11.9	-	18.2	55.3	15.9	10.6	9.5	177.0	0.037	0.3200	粘性土質礫質砂(SCsG)	斜面部表土と	飽和度高め
料田	斜面中部B	2.739	11.9	-	24.5	55.0	13.3	7.2	9.5	77.5	0.07	0.5500	粘性土質礫質砂(SCsG)	強風化花崗岩境界	自然状態の 低い飽和度
	斜面下部A	2.743	13.6	-	10.6	56.1	24.2	9.1	19.0	58.3	0.022	0.2200	礫まじり粘性土質砂(SCs-G)		飽和度高め

表-7 代表的な土の含水比、土粒子密度、湿潤密度の測定例

土の種類	沖積粘土	洪積粘土	砂質土	関東ローム	泥炭	まさ土	しらす
	50~80	30~60	10~30	80~150	110~1300	6~30	15~50
土粒子密度 ρ_s (g/cm³)	2.5~2.75	2.5~2.75	$2.6 \sim 2.8$	2.7~2.9	1.4~2.3	2.6~2.8	$2.3 \sim 2.5$
湿 潤 密 度 ρ _t (g/cm³)	1.5~1.8	1.6~2.0	1.6~2.0	1.3~1.5	0.8~1.3	1.5~2.0	1.0~1.7

【土質試験 基本と手引き, p.17, 地盤工学会, H23.2 に加筆】

③ 一面せん断試験

採取した自然状態(飽和度 21.7%~26.8%で飽和度が低い)、飽和に近づけた状態(飽和度 63.4%~84.8%で飽和度が高い)で一面せん断試験及び物理試験を実施した。試験結果を表-5 土質試験結果一覧表に示す。

なお、表-8に土質定数およびせん断強度の一般値の例、表-9に花崗岩の強度定数の一般値の例を示すが、本調査での試験試料は塩ビ管を手で地山に挿入できるほどしまりの緩い状態であることから、表-8では「自然地盤」-「礫混じり砂」-「密実でないもの」~「砂質土」-「密実でないもの」に、表-9であれば「D級」の「花崗岩」に相当するとして、表-10に今回の試験値と一般値との比較を示す。

この結果、斜面上部 1 箇所、斜面中部 2 箇所、斜面下部 1 箇所の合計 4 箇所で、飽和度の異なる供試体により一面せん断試験を実施したが、一般値の強度 (ϕ) に対し、いずれも高い値の試験値となった。

このことから、現地の地形地質の条件を反映した CU試験、CUB 試験など他の試験方法による検討の必要性が考えられる。

表-8 土質定数およびせん断強度(粘着力・内部摩擦角)の目安

	種 類	状	修	単位体積 重量 (kN/m³)	せん断抵 抗角 (度)	粘着力 (kN/m²)	地盤工学 会基準
	礫および 礫まじり砂	締固めたもの		20	40	0	{G}
盛	砂	締固めたもの	粒径幅の広いもの	20	35	0	{S}
业	109	料面のための	分級されたもの	19	30	0	1
1.	砂質土	締固めたもの		19	25	30以下	{SF}
	粘性土	締固めたもの		18	15	50以下	{M}, {C}
	関東ローム	締固めたもの		14	20	10以下	{V}
	础	密実なものまたは	は粒径幅の広いもの	20	40	0	{G}
	882	金をくないもの	LILIA MARCA VILLEY	10	33	V.	1
	弾まじり砂	密実なもの		21	40	0	{G}
	衆よしり砂	密実でないもの		19	35	0	1
	130	密実なものまたに	は粒径幅の広いもの	20	35	0	{S}
É	uy	密実でないものま	たたは分級されたもの	18	30	0	
台然	砂質士	密実なもの		19	30	30以下	{SF}
地	砂瓦工	密実でないもの		17	25	0	1
盤		固いもの(指で強	く押し多少へこむ)ハロ)	18	25	50以下	{M}, {C}
Mile.	粘性土	やや飲らかいもの)(指の中程度の力で貫入)(11)	17	20	30以下	1
	111000mm11000mm	軟らかいもの(指	が容易に貫入)110	16	15	15以下	1
	di I to bad	固いもの(指で強	く押し多少へこむ)(11)	17	20	50以下	{M}, {C}
	粘土および	やや軟らかいもの)(指の中程度の力で貫入)(注1)	16	15	30以下	
	シルト	軟らかいもの	(指が容易に貫入) (当1)	14	10	15以下	
	関東ローム			14	5(ø,)	30以下	{V}

注1) N値の目安は次のとおりである。

固いもの (N=8~15) , やや軟らかいもの (N=4~8) , 軟らかいもの (N=2~4)

注2) 地盤工学会基準の記号は、およその目安である。

【設計要領 第一集 土工 建設編, p. 1-51, 表 1-17, NEXCO 東・中・西日本, R2.7】

表-9 強度定数の例

	岩	粘板	岩(ダム	サイトの例)		花崗岩(本	四連絡橋基礎	産の例)
	4	c (kN/m²	*)	φ (°)		c (kN/	/m ²)	φ (°)
	級	範 囲	平均	範 囲	平均	範 囲	代表値	代表値
	В	2, 250~2, 750	2, 500	40~50	45	1,500~2,500	1, 500	45
硬岩	Сн	1,750~2,250	2, 000	. 35~45	40	1,000~2,000	1, 000	40
	C _M	750~1,750	1, 250	35~45	40	500~1,000	500	40
軟	C_L	250~ 750	500	30~40	35	100~1,000	100	37
岩	D	100以下	0	20~30	25	0∼ 500	0	30~35

【設計要領 第二集 橋梁建設編, p. 4-13, 表 4-2-7, NEXCO 東・中・西日本, H28.8】

表-10 試験値と一般値との比較表

		湿潤	密度		強度	定数		
土質記	武験種	r (kN)	ot /m ⁸)		c /m²)		φ °)	備考
調査孔	試料名	試験値	一般値	試験値	一般値	試験値	一般値	
	斜面上部A	16.2		38.00		36.20		飽和度高め
斜面	斜面中部A	17.7	18前後	15.00	0~30	46.70	30前後	飽和度高め
料田	斜面中部B	11.9	10削後	5.00	0~30	48.80	30削恢	自然状態の 低い飽和度
	斜面下部A	16.6		18.00		36.40		飽和度高め

※湿潤密度の試験値は4供試体の平均値

表-11 室内土質試験結果一覧表

	土質試験和	重	土粒子の密度試験	土の含木比試験		0 0	4	この粒度試	験(フルイ	+沈降分标	F)			一面世	し断試験			
調査孔	試料名	試験区間 (GL- m)	土粒子の密度 Pa (g/cm ³) 試験値	自然含水比 公。 (%) 試験値	石分 (%)	養分 (%)	砂分 (%)	シルト分 (%)	粘土分 (%)	最大粒径 (mm)	均等係数	20%粒径 D20 (mm)	50%粒径 D ₅₀ (mm)	c (lcN/m²)	φ (*)	地盤材料の分類名 (分類記号)	分類 埋戻土(現場発生土) 埋戻土(購入土) まさ土 埋戻土(購入土) まさ土 埋戻土(購入土) まさ土 埋戻土(現場発生土) まさ土 埋戻土(現場発生土) まさ土	備考
	No.1-A	1.00~1.10m	2.667	12.8		13.6	55.5	19.7	11.2	19.0	110.0	0.021	0.2500	120	12.0	礫まじり粘性土質砂(SCs-G)	埋戻土(現場発生土)	
No.1	No.1-B	2.00~2.10m	2.656	6.0	1	25.5	58.2	10.9	5.4	9.5	50.0	0.1	0.7000	-	-	粘性土質礫質砂(SCsG)	埋戻土(購入土)	
	No.1-C	3.00~3.10m	2.762	16.1		8.3	57.1	22.3	12.3	19.0	138.0	0.023	0.1800	-	-	礫まじり粘性土質砂(SCs-G)	まさ土	
	No.2-2-A	1.00~1.10m	2.694	14.8	-	15.4	54.8	19.3	10.5	9.5	109.0	0.024	0.2700	-		粘性土質礫質砂(SCsG)	埋戻土(現場発生土)	
No.2-2	No.2-2-B	2.00~2.10m	2.673	7.1		29.4	55.2	11.0	4.4	19.0	39.4	0.13	0.7800	-	-	粘性土質礫質砂(SCsG)	埋戻土(購入土)	
	No.2-2-C	3.00~3.10m	2.754	9.3	= 2	14.1	64.7	13.4	7.8	9.5	57.0	0.065	0.3700	-	-	礫まじり粘性土質砂(SCs-G)	まさ土	
No.3-1	No.3-1-A	1.00~1.10m	2.751	14.9	== 1	19.4	47.6	19.6	13.4	19.0	===	0.02	0.2200	-	1000	粘性土質礫質砂(SCsG)	埋戻土(現場発生土)	
140.5-1	No.3-1-B	2.00~2.10m	2.830	12.8	1	3.7	69.0	20.0	7.3	9.5	33.0	0.042	0.2200	-	-	粘性土質砂(SCs)	まさ土	
	斜面上部A	-	2.744	7.2	:	46.7	40.5	7.5	5.3	9.5	66.7	0.19	1.7000	38.00	36.20	粘性土まじり砂質礫(GS-Cs)		飽和度高め
	斜面中部A	-	2.748	11.9	-	18.2	55.3	15.9	10.6	9.5	177.0	0.037	0.3200	15.00	46.70	粘性土質礫質砂(SCsG)	斜面部表土と	飽和度高め
斜面	斜面中部B	-	2.739	11.9		24.5	55.0	13.3	7.2	9.5	77.5	0.07	0.5500	5.00	48.80	粘性土質藥質砂(SCsG)		自然状態の 低い飽和度
	斜面下部A	-	2.743	13.6		10.6	56.1	24.2	9.1	19.0	58.3	0.022	0.2200	18.00	36.40	礫まじり粘性土質砂(SCs-G)		飽和度高め

(6) 航空レーザー測量結果等による周辺斜面の状況確認

当地(支線水路周辺)の地形及びこれまでの土地利用の状況について確認を行った。

なお、土砂崩れ前の地形については、令和5年6月に東三河で発生した大雨以前のデータになるが、愛知県が令和元年12月に計測したLPデータ(以下「LPデータ」という。)を用いた。

土砂崩れ後の地形データについては、土砂崩れ後に中部地方整備局が実施したドローン測量(写 真測量)のデータ(以下「ドローンデータ」という。)を用いた。

また、過去を含めて土地利用の状況については、国土地理院が公開している航空写真(地理院地図)にて判読した。

【地域の地形及び地質】

「土地分類基本調査(土地履歴調査)説明書(岡崎)」によれば、「蒲郡山地」は「蒲郡市街地 北側から岡崎市南部、幸田町東部に位置する山地で、北側は西三河丘陵と接している。遠望峰山付 近から東側にかけて標高300~400mの山稜が連なっていて、山地の北側は鉢地川や山綱川、竜泉寺 川の源流域となっている。山地の西側は扇状地河川の源流域となっており、幸田町には現成の扇状 地や開析扇状地の更新世段丘がみられる。地質的には領家帯の中生代の変成岩が広く分布し、比較 的急峻な山稜となっている。」としている。

当地は、この「蒲郡山地」の西側の最南端に位置している「貧乏山(標高 225m)」の東にある斜面であり、現地踏査や土質調査の結果、現地の地質は「花崗岩質岩」であることを確認している。 土砂崩れの斜面は南東の方向に向いており、図-11 のとおり、元地形(崩れる前)の斜面角度は概ね 27°であるが、斜面の下方に花崗岩の風化残留核があり、土砂崩れ前の地形は、この前後において傾斜角度が若干変動している。

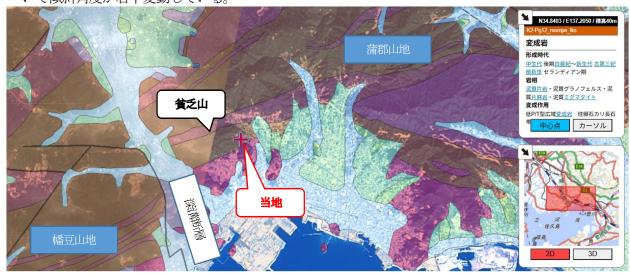


図-15 土砂崩れ周辺の地形及び地質

※ 上図(日本シームレス地質図)によれば当該地は「変成岩」に該当するが、隣接した南東側は「火成岩」の「花崗閃緑岩、トーナル岩 片麻岩」である。

- ※1 茶色線がLPデータによる土砂崩れ前(令和元年12月)の斜面。
- ※2 青色線がドローンデータによる土砂崩れ後(令和6年8月)の斜面。 ドローンデータは航空写真測量のため森林は木の高さを表している。
- ※3 赤点線は土砂崩れの源頭部である。詳細測量をしていないため点線表示。
- ※4 風化残留核の大きさ、深さ等は不明。

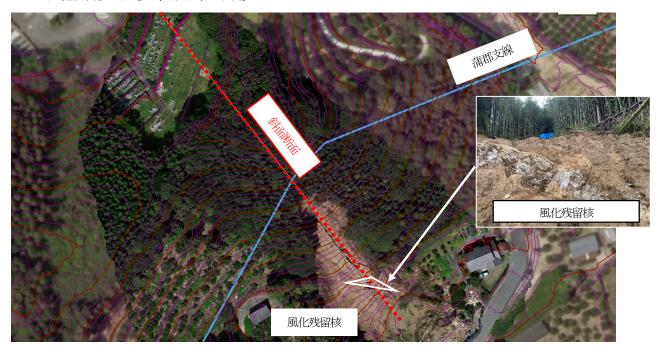
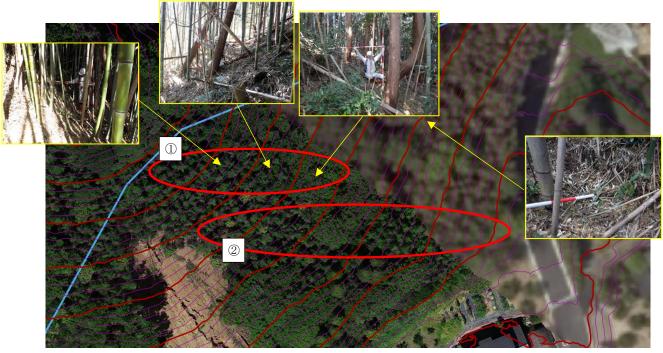
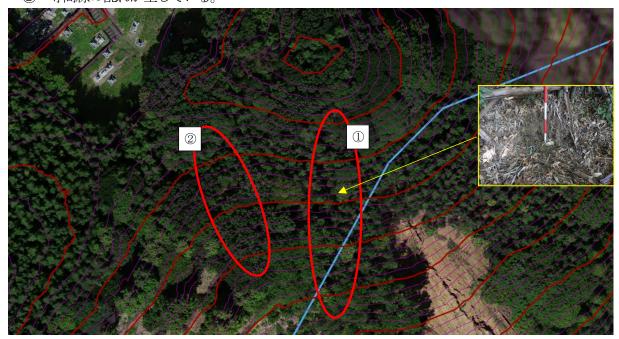


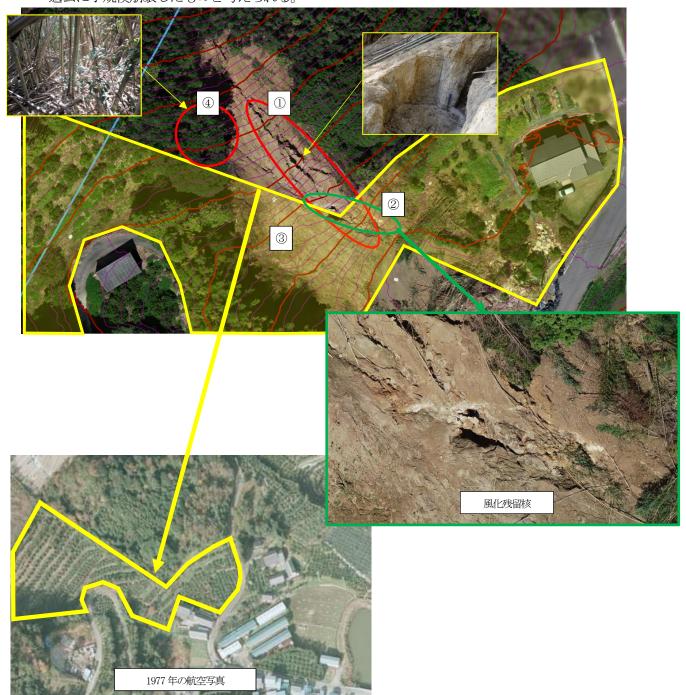
図-17 土砂崩れ斜面断面位置図


※風化残留核

花崗岩は一般に、その生成過程において、冷えて固まる際に節理と呼ばれる縦や横の亀裂が発達し、その 亀裂に沿って水や空気が進入すると、長石、雲母などが粘土鉱物へと変化して「まさ土」化するが、石英な ど風化が遅い鉱物が多いと、局所的に未風化の塊ができるが、これを風化残留核と呼ぶ。


【支線水路周辺の状況】

土砂崩れ前LPデータ(LPデータによる等高線)及び現地踏査により、以下のとおり支線水路周辺の地形の状況等を確認した。


- (1) 土砂崩れ斜面の北東斜面において線状に等高線が乱れている箇所が確認できる。
 - ① 現地踏査において、小規模段差地形や木の湾曲が確認されており、過去に小規模崩壊したものと考えられるが、この小規模段差地形が土砂崩れ源頭部から東方向に断続しているように見える。
 - ② この付近に山道があるため等高線が乱れている。

- (2) 土砂崩れ斜面の北西斜面において線状に等高線が乱れている箇所が確認できる。
 - ① 現地踏査において小規模段差地形が確認されており過去に小規模崩壊したものと考えられる。
 - ② 等高線の乱れが生じている。

- (3) 土砂崩れ斜面において線状に等高線が乱れている箇所が確認できる。
 - ① 土砂崩れ後に生じたガリ浸食に沿って等高線が乱れている。
 - ② ガリ浸食の最下流には風化残留核がある。
 - ③ 黄色枠内は過去に果樹園であったので、等高線はその影響を受けている。
 - ④ 等高線には乱れがないが、現地踏査において、小規模段差地形や木の湾曲が確認されており、 過去に小規模崩壊したものと考えられる。

【確認の結果(まとめ)】

LPデータによる令和元年計測の地形(等高線)や現地調査の結果から、蒲郡支線周辺斜面の地形や形状は以下のような状況であることが言える。

① 蒲郡支線の周辺には、小規模な段差地形が断続的に分布しており、落差 10cm、幅 1m程度の小規模な極小規模な小崖が数多く見られる。

写真-2 樹木や竹の倒木状況

写真-3 小規模な小崖

② 蒲郡支線の周辺に植生している樹木や竹は、湾曲や根曲がりをしており、小規模な崩壊後に再び垂直に生長した名残がある。

写真-4 樹木の湾曲状況

写真-5 竹の根曲がり状況

以上のこのことから、蒲郡支線周辺の斜面は、今回の土砂崩れ箇所以外においても不安定な状況であり、潜在的には崩落しやすい地形と考えられる。

4. 土質試験結果

(1) 土質ボーリング柱状図

調 查 名 豊川用水施設支線水路土質調査業務

事業名 または 工事名

調査目的及び調査対象 砂防 地下水路

#	— 1	ング	名	No. 1			調査位置	愛知	県蒲郡市竹谷	町大	久古地内					北都	34	≗° 50′	26. 58"
発	注	機	羅	独立行政法人水	資源	幾構中部支社豊川	用水総合事業	業部			調査期間	2025年 2月 3日	~ 2025年	2月	3日	東翁	₹ 137	° 12′	14. 57"
調	查:	集 者	名	国土防災技術株 電 話 052-799-			主任技師	高橋 地質調査 登録番	健一 禁 第22667号		現場代理人	高橋 健一 地質調査技士 第22667号	コーア	高橋 地質調査技 登録番号	健一 [±] 第22667号	ボー	リンク 任 者	高橋 地質調査技	健一 禁 第22667号
Ŧl		標	剛	T. P. 77. 94m	角	180° 方	270° 90°	地	水平0°		試錐機								
総	削	孔	爭	3.30m	度	〒 〒	西東	盤勾配	鉛 直 90°0°	使用機種	エンジン	無			ポンプ	無			

ħ	票	標	深	現	現	地盤	色	相	相	地	記	孔内			標	準	貫	入	括	、験	Ĭ		試	料採	取	室原	li
		高	nha	場土質	場	盤材料の		対	対	質時		水位		深度	- N	値図		Λ	/ 深	100mm の打雪	ごと 打撃ご	H:	t	試料		位 内 置	
	₹	向	度	名 (模	土質	工学的公		密	稠			/測定日							度	≀ ≀	00 200 と 200 300 貫 300 300 丸		度	1	方	試試	
(i	m)	(m)	(m)	様	名	分類	調	度	度	名	事	月日	0	10 20) 3	30	40	50 値	(m)		量	量量	৳ (m)	号	法	験験	
	1	76. 04	1 90		シルト礫混じ り砂		黄褐灰				細砂主体で、シルト分を含む。 GL-0.3m, GL-0.6m付近、 65cm程度の中 鍵を含む。細い竹の根が多く混じる。 含水小。												1,00	No. 1 -A	1 ⊖#	物理	
		74. 94 74. 64	1.30	0.00	礫質砂		赤褐黄褐				均質ににシルト分を多く含む。 均質にφ2~5mm程度の細礫を多く含 む。 含水小。 総経均一。均質にシルト分を多く含 む。含水小。													-В	1⊖# 11@#		00 /s

調査 名 豊川用水施設支線水路土質調査業務

事業名 または 工事名

調査目的及び調査対象

砂防 地下水路

ボ-	-IJ:	ノグ	名	No. 2				調査位置	愛知	県蒲郡市竹谷	町大	久古地内						北 #	\$ 34	° 50′	26. 35"
発	注	機	関	独立行政法人水	資源	機構中部支袖	土豊川	用水総合事業	纟部			調査期間	2025年	2月 3日	~ 2025年	2月	3日	東翁	≇ 137	° 12'	14. 16"
調	查算	き者	名	国土防災技術株 電 話 052-799-				主任技師	高橋 地質調査技	健一 禁 第22667号		現場代理人	高橋 作 機関調査技士	健一 第22667号	コア鑑定者	高橋 地質調査技:	健一 = 第22667号	ボー黄	リンク 任 者	高橋地質調査	健一 禁: 第22667号
孔		標	高	T. P. 77. 66m	角	180°	方。	北 0° 90°	地	水平0°	使用	試錐機	ハンド	オーガー							
総	削	孔	長	3.30m	度		位	西東	盤勾配	鉛 20°	樺	エンジン	無				ポンプ	無			

標	標	深	現場	現	地盤	色	相	相		記	孔内			標	準	貫	入工	_			I±T	50	_	試料:深声		
尺	高	度	土質	場出土	材料のエ		対	対	質時		水位/		深月	€−∧	√値図			17	100m の打		撃ご	Ini	沈時	本		
			名 (模	質	上学的公		密	稠	代		測定品							度	100 2	00 20	の書		の 貫	度	方	
(m	(m)	(m)	様)	名	分類	調	度	度		事	月日	0 1	.0 :	20	30	40	₅₀ fi	直 (m	1 1	00 00	入 量	量	人量	(m)	法	
mulumlmulu	1 76. 26	1, 40		シルト礫混じ り砂		黄褐灰				細砂主体で、シルト分を含む。細い竹の根が多く混じる。 61~2cm程度の礫を含む。 GL-0.4m付近、φ3cm程度の中礫が混じ る。 含水小。 GL-1.4mで障害物にあたり掘進不能。																

 調査
 名
 豊川用水施設支線水路土質調査業務

 事業名 または 工事名

 調査目的及び調査対象
 砂防 地下水路

ボー	・リン	グ	名	No. 2-1				調査位置	愛知	県蒲郡市竹谷	町大	久古地内							北	棒	34° 5	50′ 2	26. 61"
発	注	機	関	独立行政法人水資源村	幾構	中部支社豊	·川用	用水総合事	業部			調査期間	2025年	2月	3日	~ 2025年	2月	3日	東(経 1	37° 1	12′ 1	14. 24"
調音	ŧ #	者	名	国土防災技術株式会社 電 話 052-799-8101				主任技師	高橋 地質調査法	健一 禁 第22667号		現場代理人	高橋 地質調査技士 登録番号:	健一 第226	67号	コア鑑定者	高橋 地質調査技	健一 # 第22667号	ボー黄	-リン 任	グ青戦	系橋 質調査技	健一 # 第22667
孔	п	標		T. P. 77. 85m	角	180°	方	2700 H 0°	地		l	試 錐 機 エンジン									•		
総	削	孔	長	3. 20m	度	[〒]	位	西 180° 南	90 監勾配	型 90° 0°	機種	エンジン	無					ポンプ	無				

標	標	深	現	現	地盤	色	相	相	地	記	孔			標	準	貫	ス		試	験				試	炓採	取	室原	削
			場土質	場	材料		対	対	質		内水位		深度	ξ-Λ	循図			N i	架 1	00mmご. O打撃回	対数	丁 50				採	_内 位	孔
尺	高	度	名(土	の工学		密	稠	時		測		2112					,	度	0 100 2	200 2	との質	の	度		取上	置 試 試	月
(m)	(m)	(m)	模 様)	質 名	的分類	調	度	度	代名	事	定月日	0 1	.0 2	0	30	40	501	直		00 200 3	- 17	八八世	1/	(m)	番号	方法	試 験験	
			•••	シルト幽		黄褐灰				細砂主体で、シルト分を含む。上部は 細い竹の根が多く混じる。GL-2m付近						10	50,								v			
1	75, 75	2.10		礫混じり砂		人~黄褐				・、3cm程度の角礫が混入する。含水小。																		
3	74, 65	3, 20		シルト質細砂		黄褐				粒径均一。均質にシルト分を多く含む。含水小。																		2
		J. 20																										

調 査 名 豊川用水施設支線水路土質調査業務

事業名 または 工事名

調査目的及び調査対象 砂防 地下水路

ボ-	-IJ:	ング	名	No. 2-2			1	調査位置	愛知	県蒲郡市竹谷	町大	久古地内							北緯	34°	50′	26. 61"
発	注	機	X	独立行政法人水	資源	機構中部支社	:豊川用	水総合事業	纟部			調査期間	2025年	2月	4日 ~	~ 2025年	2月	4日	東経	137°	12'	14. 24"
調	查算	き 者	名	国土防災技術株 電 話 052-799-			:	主任技師	高橋	健一 禁 第22667号		現場代理人	高橋 作 地質調査技士 登録番号:	健一 第2266	7号	コーア	高橋 地質調査技	健一 [±] 第22667号	ボーリ	ング	高橋 網質調査技 登録番号	健一 * 第22667号
ŦL		標	阃	T. P. 77. 68m	角	180°	方 270%	#L 0° 90°	地	水平0°		試錐機	ハンド	オーガー	_							
総	削	Æ	長	3.50m	度		位	180°南	型勾配	鉛 直 90°0°	機種	エンジン	無					ポンプ	無			

	標	標	深	現	現	地	色	相	相	地	記	孔			標	準	貫	入	計	ļ	験			i i	式料	采取	室原	削
	尺	高	度	場土質	場土	盤材料のエ		対	対	質時		内水位/		深月	雙一 /	V値図		Λ			mごと 「撃回数	1		自治沈時	震 討 米		位 内 置	孔
	, ,			名(模様	質	-学的分		密	稠	代		測 定 月							度	≀	100 20 200 30	の貫入	貫入	の貫入	番			月
Ļ	(m)	(m)	(m)	$\overline{}$	名	類	調	度	度	-	事	日 _C	1	0	20	30	40	50 個	<u>(</u> (m)	Н	_	量	量	量 (i	n) 号	· 法	験験	뿌
	- 1	75, 98	1, 70	.24,880	シルト礫混じ り砂		黄褐灰				細砂主体で、シルト分を含む。 GL-1、55m, GL-1、55m付近、 φ 5cm程度の 円〜角礫を含む。 細い竹の根が多く混じる。 含水小。 竹質ににシルト公を多く含む。	_												1.	00 10 No. -2-	A		
	- 2 - 3	74. 68 74. 18	3, 00	- 200	シルト混じり 礫質砂		赤褐黄褐				均質ににシルト分を多く含む。 均質に φ2~5mm程度の組礫を多く含 む。 GL→m付近、 φ5cm程度の角碟混じる。 含水小。 粒径均一。均質にシルト分を多く含 む。含水小。	-												2.	00 No2- 00 現場 10 基場 -2-	透水試象	特理	

土質ボーリング柱状図 (標準貫入試験)

調 査 名 豊川用水施設支線水路土質調査業務 事業名 または 工事名

調査目的及び調査対象 砂防 地下水路

ボーリング 名	No. 3	調査位置	愛知県蒲郡市竹谷町大	北緯	34° 50′ 26.59″				
発注機関	独立行政法人水資源機構中部支社豊川	用水総合事業	 と を 部	調査期間	2025年 2月 4日	~ 2025年	2月 4日	東経	137° 12′ 14.14″
調査業者名	国土防災技術株式会社 電 話 052-799-8101	主任技師	高橋 健一 ^{地質調査技士} 第22667号	現場代理人	高橋 健一 ^{地質調査技} 第22667号	コア産産者	高橋 健一 ^{寶寶} 第22667号	ボーリ	リング 高橋 健一 E 者 ^{地質調査技士} 第22667号
孔口標高	T. P.	700 100 900	地 水平0° 使	試錐機	ハンドオーガー				
総削孔長	1.10m 度	T T	幻 聖レ 機	エンジン	無		ポンプ	無	

標	標	深	現場	現	地盤	色	相	相	地	記	孔内			標	準	貫	入	試	験				Ī	試料 技	采取	室原	
	 _古	œ	出質	場	材料の		対	対	質吐		水位/		深	度一点	V値図		N	深	100mm の打撃	ごと E回数	ご		自沈時	架 試料	採取		
尺	高 	度	名(模	土質	工学的		密	稠	時代		/測定							度	₹ ₹	0 200	この書	と		度 番		置 試 試	
(m)	(m)	(m)	様	名	分類	調	度	度		事	月日	0	10	20	30	40	₅₀ 値		100 20	0 300	入 量	へ 量	入 量 (m) 号	法	験験	
mahamham	1 76.79	1.10		シルト礫混じり砂	-	黄褐灰				細砂主体で、シルト分を含む。 GL-0.45m, φ2cm程度の円礫混じる。 含水小。 GL-1.1mで障害物にあたり掘進不能。																	

土質ボーリング柱状図 (標準貫入試験)

讀 查 名 豊川用水施設支線水路土質調査業務

事業名 または 工事名

調査目的及び調査対象 砂防 地下水路

				•	10-9.			, m.,		. 10 100 -1		Z-14										_					
ボ—	リン	ノグ	名	No. 3-1						調査位置	愛知	巾県蒲郡市竹名	町大	久古地内								北	緯	34°	50′ 26.	6.64"	
発	注	機	関	独立行政法力	、水資源	原機	構中部	邻支剂	土豊月	川用水総合事	業部			調査期間	2025年	2月	4日	~ 2	2025年	2月	4 ⊟	東	経 1	37°	12′ 14.	. 18″	
調3	ŧ #	者	名	国土防災技術 電 話 052-7						主任技師	高標地質調整	新 健一 欝± 第22667号		現場代理人	高橋 地質調査技士 登録番号	健一 第226	567号	二鑑	ア定者	高橋	健一 = 第22667号	ボ- 責	ーリン	グ青地	高橋 俊 質調査技士 含 登録番号:	建一 第2266	7号
ŦL		標		T. P. 78. 09m	角	18	30° - -	\ 000	方	270° 16 90	地盤勾配	☆平0°	使用機種	試錐機	ハンド	オーカ	ij—					-		-			
総	削	孔	長	3.50m	度	: 0		790 0°	位	西 東	勾配	90°0°	機種	エンジン	無						ポンプ	無					
				•	•							•		-													
標	標	Ĕ	深	現り		地	色	相	相力	也	記	1	孔		標	準	貫	入	試	験		絬	料採	取	室原	亰	削

柞	票	標	深	現場	現	地盤	色	相	相	地	記	孔内		標	準	貫				験	. I	م ــ ا	T_	試料			室』
		<u> </u>	nte	土質	場	材料の		対	対			水位	深月	变一 /	V値図			/ 深	100 の#	mmごと 丁撃回	数型	- -	日共			採取	内 内 龍
<i>J</i>	2	高	度	名(模	土 質	工学的		密	稠	時代		/ 測 定						度	` ₹	100 2	σ	冒	To.	度	番	方	ī 試
(1	n)	(m)	(m)	様)	名	分類	調	度	度	名	事	月 日 ₀	 10	20	30	40	₅₀ 値	(m)	1	200 3	500 月 入 量		入 量	(m)	号	法	験!
m damada m	1				シルト礫混じ り砂		黄褐				細砂主体で、シルト分を含む。 細い竹の根が多く混じる。 少量のφ1~2cm程度の礫を含む。 含水小。					-								1, 00	No. 3	7⊝ #	勿理
hundanah	2	76, 49	1, 60		シルト		黄	_			粒径均一。均質にシルト分を多く含む。含水小。					+								0.00		⊅ 0#	勿理
	3	74, 59	3, 50		質細砂		褐				4. 百水小。	-													現場透	水試験	k=2.

(2) 現場透水試験結果 (ボーリング部)

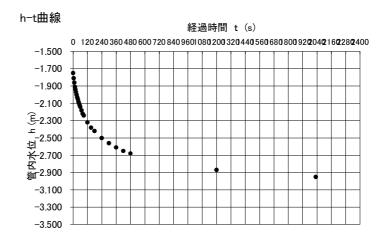
単孔を利用した透水試験(非定常法/直線勾配法)

調査件名	豊川用水施設支線水路土質調査業務

試験年月日

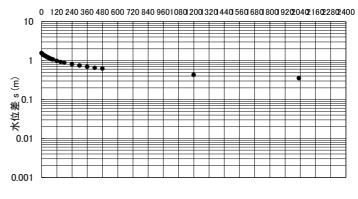
令和7年2月4日

地点番号 No.1


試 験 者

髙橋 健一

試 験 方 法		汲上げ(回復) /投入	天 候		晴
試験区間の深さ	GL m	3.00~3.30	管口の高さ	GL m	0.80
試験区間の長さ	L m	0.30	上部離隔長	L1'm	0.00
平衡水位測定		試験前/試験後	下部離隔長	L2' m	0.00
平 衡 水 位	$h_0GL\ m$	-3.30	試験区間の孔径	D m	0.100
試験開始水位差	sp m	1.550	測定パイプの内径	d m	0.071
			等 価 内 径	de m	0.071
	試験区間の深さ 試験区間の長さ 平衡水位測定 平衡水位	試験区間の深さ GL m 試験区間の長さ L m 平衡水位測定 平衡水位 h ₀ GL m	試験区間の深さGL m3.00~3.30試験区間の長さL m0.30平衡水位測定試験前/試験後平衡水位 h ₀ GL m-3.30	試験区間の深さGL m3.00~3.30管 口 の 高 さ試験区間の長さL m0.30上 部 離 隔 長平衡水位測定試験前/試験後下 部 離 隔 長平衡水位 h ₀ GL m-3.30試験区間の孔径試験開始水位差sp m1.550測定パイプの内径	試験区間の深さ GL m 3.00~3.30 管 口 の 高 さ GL m 試験区間の長さ L m 0.30 上 部 離 隔 長 L1' m 平衡 水位 測定 試験前/試験後 下 部 離 隔 長 L2' m 平 衡 水 位 h ₀ GL m -3.30 試験区間の孔径 D m 試験開始水位差 sp m 1.550 測定パイプの内径 d m


試 験 記 録

経過時間	水位測定管内	水位差 s
t	水位 h	$(=h-h_0)$
S	GL m	m
0	-1.750	1.550
5	-1.810	1.490
10	-1.860	1.440
15	-1.910	1.390
20	-1.940	1.360
25	-1.970	1.330
30	-2.000	1.300
35	-2.030	1.270
40	-2.050	1.250
45	-2.080	1.220
50	-2.100	1.200
55	-2.120	1.180
60	-2.140	1.160
70	-2.180	1.120
80	-2.220	1.080
90	-2.240	1.060
120	-2.320	0.980
150	-2.380	0.920
180	-2.420	0.880
240	-2.500	0.800
300	-2.560	0.740
360	-2.610	0.690
420	-2.650	0.650
480	-2.680	0.620
1200	-2.870	0.430
2030	-2.950	0.350

log s-t 曲線

経過時間 t(s)

直線上の点座標	t_1	S	0	
直線上の点座標	t_2	S	15	
直線上の点座標	s_1	m	-1.750	
直線上の点座標	s_2	m	-1.910	

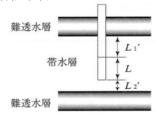
a -	$\log(s_1/s_2)$
и –	$t_2 - t_1$

結

果

2.53E-03

験


直接勾配 a 1/s

試

 $k = \frac{(2.3de)2}{8L}\log(\frac{2L}{D})a$

透水係数 k m/s 2.19E-05

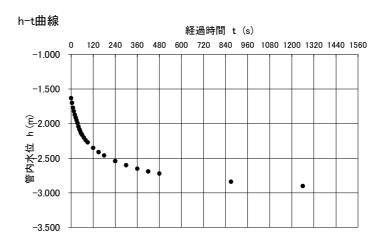
特記事項

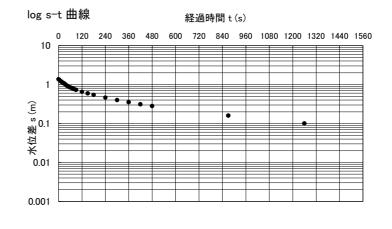
単孔を利用した透水試験(非定常法/直線勾配法)

豊川用水施設支線水路土質調査業務 調査件名

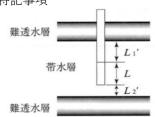
試験年月日

令和7年2月4日


地点番号 No.2-2 試 験 者


髙橋 健一

	試 験 方 法		汲上げ(回復) /投入	天 候		晴
	試験区間の深さ	GL m	2.70~3.00	管口の高さ	GL m	1.10
	試験区間の長さ	L m	0.30	上部離隔長	L1'm	0.00
試験条件	平衡水位測定		試験前/試験後	下 部 離 隔 長	L2' m	0.00
	平 衡 水 位	h ₀ GL m	-3.00	試験区間の孔径	D m	0.100
	試験開始水位差	sp m	1.370	測定パイプの内径	d m	0.071
				等 価 内 径	de m	0.071


試 記 録

経過時間	水位測定管内	水位差s
t	水位 h	$(=h-h_0)$
S	GL m	m
0	-1.630	1.370
5	-1.700	1.300
10	-1.770	1.230
15	-1.820	1.180
20	-1.870	1.130
25	-1.910	1.090
30	-1.950	1.050
35	-1.990	1.010
40	-2.040	0.960
45	-2.080	0.920
50	-2.110	0.890
55	-2.140	0.860
60	-2.160	0.840
70	-2.200	0.800
80	-2.240	0.760
90	-2.270	0.730
120	-2.350	0.650
150	-2.410	0.590
180	-2.460	0.540
240	-2.540	0.460
300	-2.600	0.400
360	-2.650	0.350
420	-2.690	0.310
480	-2.720	0.280
870	-2.840	0.160
1260	-2.900	0.100

				試験	結果		
直線上の点座標	t_1	S	0	直接勾配 a 1/s	3.58E-03	透水係数 k m/s	3.09E-05
直線上の点座標	t_2	S	10			(2.2.1.)	2 2 7
直線上の点座標	s_1	m	-1.630	$a = \frac{\log x}{\log x}$	$g(s_1/s_2)$	$k = \frac{(2.3de)}{}$	$\frac{2}{2}\log(\frac{2L}{2})a$
直線上の点座標	s_2	m	-1.770	<i>u</i> = —	$t_2 - t_1$	$\kappa = \frac{8L}{}$	$-\log(\frac{D}{D})u$
			1		- 2 - 1	OL.	D

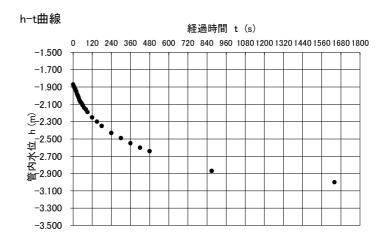
単孔を利用した透水試験(非定常法/直線勾配法)

調查件名 豊川用水施設支線水路土質調查業務

試験年月日

令和7年2月4日

地点番号 No.2-2


試 験 者

髙橋 健一

	試 験 方 法		汲上げ(回復) /投入	天 候		晴
	試験区間の深さ	GL m	3.20~3.50	管口の高さ	GL m	0.60
	試験区間の長さ	L m	0.30	上部離隔長	L1'm	0.00
試験条件	平衡水位測定		試験前/試験後	下 部 離 隔 長	L2' m	0.00
	平 衡 水 位	h ₀ GL m	-3.50	試験区間の孔径	D m	0.100
	試験開始水位差	sp m	1.630	測定パイプの内径	d m	0.071
				等 価 内 径	de m	0.071

試 験 記 録

経過時間	水位測定管内	水位差 s
t	水位 h	$(=h-h_0)$
S	GL m	m
0	-1.870	1.630
5	-1.890	1.610
10	-1.910	1.590
15	-1.930	1.570
20	-1.950	1.550
25	-1.980	1.520
30	-2.000	1.500
35	-2.020	1.480
40	-2.050	1.450
45	-2.070	1.430
50	-2.080	1.420
55	-2.090	1.410
60	-2.110	1.390
70	-2.140	1.360
80	-2.160	1.340
90	-2.190	1.310
120	-2.250	1.250
150	-2.300	1.200
180	-2.350	1.150
240	-2.430	1.070
300	-2.490	1.010
360	-2.550	0.950
420	-2.600	0.900
480	-2.640	0.860
870	-2.870	0.630
1640	-3.000	0.500

直線上の点座標	t_1	S	0
直線上の点座標	t_2	S	45
直線上の点座標	s_1	m	-1.870
直線上の点座標	s_2	m	-2.070

a –	$\log(s_1/s_2)$
u –	$\frac{1}{t_2 - t_1}$

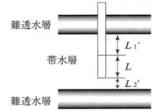
結

果

9.81E-04

験

直接勾配 a 1/s


試

k –	(2.3de)2	$\log(\frac{2L}{R})a$
κ –	$\frac{}{8L}$	$\frac{\log(\overline{D})a}{D}$

8.48E-06

透水係数 k m/s

特記事項

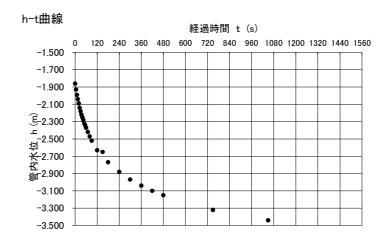
単孔を利用した透水試験(非定常法/直線勾配法)

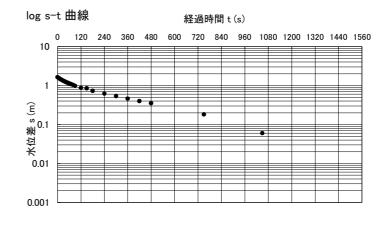
調查件名 豊川用水施設支線水路土質調查業務

試験年月日

令和7年2月4日

地点番号 No.3-1


試 験 者


髙橋 健一

試 験 方 法		汲上げ(回復) /投入	天 候		晴
試験区間の深さ	GL m	3.20~3.50	管口の高さ	GL m	0.60
試験区間の長さ	L m	0.30	上部離隔長	L1'm	0.00
平衡水位測定		試験前/試験後	下部離隔長	L2'm	0.00
平 衡 水 位	$h_0GL\ m$	-3.50	試験区間の孔径	D m	0.100
試験開始水位差	sp m	1.640	測定パイプの内径	d m	0.071
			等 価 内 径	de m	0.071
	試験区間の深さ 試験区間の長さ 平衡水位測定	試験区間の深さ GL m 試験区間の長さ L m 平衡水位測定 平 衡 水 位 h ₀ GL m	試験区間の深さ GL m 3.20~3.50 試験区間の長さ L m 0.30 平衡水位測定 試験前/試験後 平 衡 水 位 h ₀ GL m -3.50	試験区間の深さ GL m 3.20~3.50 管 口 の 高 さ 試験区間の長さ L m 0.30 上 部 離 隔 長 平 衡 水 位 h ₀ GL m -3.50 試験区間の孔径 試験開始水位差 sp m 1.640 測定パイプの内径	試験区間の深さ GL m 3.20~3.50 管 口 の 高 さ GL m 試験区間の長さ L m 0.30 上 部 離 隔 長 L1' m 平衡水位測定 試験前/試験後 下 部 離 隔 長 L2' m 平 衡 水 位 h ₀ GL m -3.50 試験区間の孔径 D m 試験開始水位差 sp m 1.640 測定パイプの内径 d m

試 験 記 録

経過時間	水位測定管内	水位差 s
t	水位 h	$(=h-h_0)$
S	GL m	m
0	-1.860	1.640
5	-1.930	1.570
10	-1.990	1.510
15	-2.040	1.460
20	-2.090	1.410
25	-2.140	1.360
30	-2.180	1.320
35	-2.220	1.280
40	-2.250	1.250
45	-2.280	1.220
50	-2.320	1.180
55	-2.340	1.160
60	-2.370	1.130
70	-2.420	1.080
80	-2.470	1.030
90	-2.520	0.980
120	-2.630	0.870
150	-2.650	0.850
180	-2.770	0.730
240	-2.880	0.620
300	-2.970	0.530
360	-3.040	0.460
420	-3.100	0.400
480	-3.150	0.350
750	-3.320	0.180
1050	-3.440	0.060

直線上の点座標	t_1	S	0
直線上の点座標	t_2	S	25
直線上の点座標	s_1	m	-1.860
直線上の点座標	s_2	m	-2.140

a –	$\log(s_1/s_2)$
u –	$t_2 - t_1$

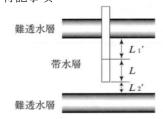
結

果

2.44E-03

験

直接勾配 a 1/s


試

$$k = \frac{(2.3de)2}{8L}\log(\frac{2L}{D})a$$

2.11E-05

透水係数 k m/s

特記事項

(3) 土質試験結果一覧表 (ボーリングNo.1)

土質試験結果一覧表(基礎地盤)

調查件名 豊川用水施設支線水路土質調査業務

整理年月日

2025年 3月 3日

整理担当者 松川 尚史

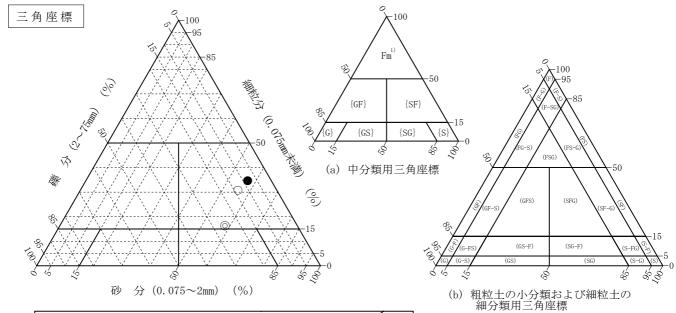
					整理担当者	松川 尚史
痯	式 料 番 号	No. 1-A	No. 1-B	No. 1-C		
	(深 さ)	$(1.00 \sim 1.10 \text{m})$	$(2.00\sim2.10\text{m})$	(3.00∼3.10m)		
	湿 潤 密 度 ρ _t Mg/m³					
•	乾燥密度ρα Mg/m³					
	土粒子の密度 ρ _s Mg/m³	2.667	2. 656	2. 762		
	自然含水比 w %	12. 8	6. 0	16. 1		
	間 隙 比 <i>e</i>					
ť	飽 和 度 S _r %					
	石 分 (75mm以上) %					
	で 分 (7 5 mm) % (7 5 mm) % (2~7 5 mm) %	13. 6	25. 5	8. 3		
				F		
	砂 分¹¹ (0.075~2mm) %	55. 5	58. 2	57. 1		
	シルト分¹ (0.005~0.075mm) %	19. 7	10. 9	22. 3		
	粘土分¹(0.005mm精)%	11. 2	5. 4	12. 3		
	最大粒径 mm	19	9.5	19		
:	均 等 係 数 <i>U</i> 。	110	50. 0	138		
	50%粒径 D ₅₀ mm	0. 25	0.70	0.18		
	液性限界w1 %					
	塑性限界 w。 %					
	塑性指数 I,					
	コンシステンシー指数 <i>I</i> 。					
	地盤材料の	礫まじり	粘性土質	礫まじり		
	分類名	粘性土質砂	礫質砂	粘性土質砂		
	分類記号	(SCs-G)	(SCsG)	(SCs-G)		
	試験方法					
	圧縮指数 <i>C</i> 。					
	圧密降伏応力 <i>p</i> 。kN/m²					
	ZEMITO VIETO DE RIVIII					
	曲山 工 統 3 年 ~ 1.M / . 2					
	一軸圧縮強さ q w kN/m²					
1	一軸圧縮強さ q u kN/m²					
1	一軸圧縮強さ q u kN/m² 一軸圧縮強さ q u kN/m²					
<u> </u>	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m²					
一曲巨宿	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 試 験 条 件					
d E	一軸圧縮強さ q kN/m² 一軸圧縮強さ q kN/m² 一軸圧縮強さ q kN/m² 試 験 条 件 全 応 力 c kN/m²					
	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 試 験 条 件					
	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 試験条件 全応力 c kN/m² たが広れ c kN/m²					
	-軸圧縮強さ q w kN/m² -軸圧縮強さ q w kN/m² - 軸圧縮強さ q w kN/m²					
<u> </u>	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 試験条件 全応力 c kN/m² たが広れ c kN/m²					
i .	一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 一軸圧縮強さ q_u kN/m² 試験条件 全応力 c kN/m² たが広れ c kN/m²					
由こ音	- 軸圧縮強さ q u kN/m² - 軸圧縮強さ q u kN/m² - 軸圧縮強さ q u kN/m² 試験条件 全応力					
i i	一軸圧縮強さ q w kN/m² 一軸圧縮強さ q w kN/m² 一軸圧縮強さ q w kN/m² 試 験 条 件 全 応 力					
	- 軸圧縮強さ q u kN/m² - 軸圧縮強さ q u kN/m² - 軸圧縮強さ q u kN/m² 試験条件 全応力					
_	一軸圧縮強さ q w kN/m² 一軸圧縮強さ q w kN/m² 一軸圧縮強さ q w kN/m² 試験条件 全応力 c kN/m² 有効応力 c' kN/m² φ'。 最小密度ρωπιμησ/m³					

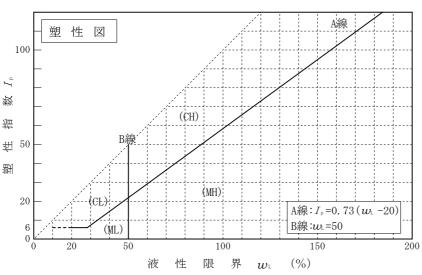
特記事項

 $[1kN/m^2 = 0.0102kgf/cm^2]$

¹⁾ 石分を除いた75mm未満の土質材料 に対する百分率で表す。

地盤材料の工学的分類


調査件名 豊川用水施設支線水路土質調査業務


試験年月日

2025年 2月 21日

試 験 者 松川	試	松川i	尚史
----------	---	-----	----

	試	料	番	号		No. 1-A	No. 1-B	No. 1-C		
	(深	さ)		(1.00~1.10m)	(2.00∼2.10m)	(3.00∼3.10m)		
石	分	(75mm	以上)	%					
礫	分	(2~7	5mm)		%	13.6	25. 5	8.3		
砂	分	(0.07	5 ∼ 2	mm)	%	55. 5	58. 2	57. 1		
細粒	分分	(0.07	5mm≯	ト満)	%	30. 9	16. 3	34. 6		
シル	ト分	(0.00	5~0	. 075m	m)%	19. 7	10. 9	22. 3		
粘土	: 分	(0.00	5mm≠	 卡満)	%	11. 2	5. 4	12. 3		
最	大	粒	径		mm	19	9. 5	19		
均	等	係	数	$U_{\rm c}$		110	50. 0	138		
液	性	限	界	w _L	%					
塑	性	限	界	$w_{\scriptscriptstyle extstyle p}$	%					
塑	性	指	数	$I_{\scriptscriptstyle m p}$						
Lula rienu	J. J. Jol	~ /\ \	cr. h			礫まじり	粘性土質	礫まじり		
地盤	材料	の分類	浿名			粘性土質砂	礫質砂	粘性土質砂		
分	類	記	号			(SCs-G)	(SCsG)	(SCs-G)		
凡	例	記	号			0	©	•		

特記事項 1) 主に観察と塑性図で判別分類

JIS A 1202 JGS 0111

土 粒 子 の 密 度 試 験 (測定)

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 17日

試	験	者	中嶋	恶
DT/	河火	13	十二	乏

				武	駛 有 中	鳴 変	
試 料 番	号 (深 さ)	No. 1-A (1.	00~1.10m)		No. 1-B (2.	00~2.10m)	
ピクノメ	— <i>я</i> — No.	522	523	524	525	526	527
(試料+蒸留水+ピ	°クノメーター)質量 m ((T ₁) g	153. 204	151. 784	150. 228	151. 349	137. 966	151. 301
$m_{\mathfrak{s}}(T_1)$ をはかっ	たときの内容物の温度 $T_{\scriptscriptstyle m I}$ $^{\circ}$ C	17. 5	17. 5	17. 5	17. 5	17. 5	17. 5
T_1 ℃における \bar{z}	素留水の密度 $ ho_{\it w}(\it T_{\it 1})$ Mg/m^3	0. 99868	0. 99868	0. 99868	0. 99868	0. 99868	0. 99868
温度 T₁℃の蒸留か (蒸留水+ピクノ	くを満たしたときの $m{m}_{\mathfrak{a}}(T_{\mathfrak{l}})^{\mathfrak{l})}$ g	143. 062	141. 433	140. 094	139. 144	125. 439	139. 619
	容 器 No.	522	523	524	525	526	527
試 料 の	(炉乾燥試料+容器)質量g	102.680	101. 739	97. 948	102. 210	88. 994	104. 163
炉乾燥質量	容器質量g	86. 446	85. 232	81. 726	82. 655	68. 874	85. 480
	<i>m</i> s g	16. 234	16. 507	16. 222	19. 555	20. 120	18. 683
土 粒 子	の 密 度 $ ho_{\rm s}$ ${ m Mg/m^3}$	2.661	2. 678	2. 661	2. 657	2. 646	2.665
平均	値 ρ _s Mg/m³	<u>.</u>	2. 667			2. 656	
試 料 番	号 (深 さ)	No. 1-C (3.	00~3.10m)				
ピクノメ	ー タ ー No.	528	529	530			
(試料+蒸留水+ピ	°クノメーター)質量 m ((T ₁) g	153. 251	142. 271	151. 980			
$m_b(T_1)$ をはかっ	たときの内容物の温度 $T_{\scriptscriptstyle 1}$ $^{\circ}$ C	17.5	17. 5	17. 5			
T_1 ℃における \bar{z}	素留水の密度 $ ho_w(T_1)$ ${ m Mg/m^3}$	0. 99868	0. 99868	0. 99868			
温度 T₁℃の蒸留水 (蒸留水+ピクノ	くを満たしたときの $m{m}_{m{a}}(T_1)^{1)}$ g	143. 493	131. 854	142. 092			
	容 器 No.	528	529	530			
試料の	(炉乾燥試料+容器)質量g	103. 194	91. 815	101. 129			
炉乾燥質量	容器質量g	87. 893	75. 502	85. 651			
	<i>m</i> s g	15. 301	16. 313	15. 478			
土 粒 子	の 密 度 $ ho_s$ Mg/m³	2. 757	2. 763	2. 765			
平均	値 ρ _s Mg/m³		2. 762				
試 料 番	号(深さ)						
ピクノメ	ー タ ー No.						
(試料+蒸留水+ピ	°クノメーター)質量 m ((T ₁) g						
$m_b(T_1)$ をはかっ	たときの内容物の温度 $T_{\scriptscriptstyle 1}$ $^{\circ}$ C						
	素留水の密度 $ ho_w(T_1)$ ${ m Mg/m^3}$						
温度 T₁℃の蒸留か (蒸留水+ピクノ	くを満たしたときの $m{m}_{\mathfrak{a}}(T_1)^{1)}$ g						
	容 器 No.						
試 料 の	(炉乾燥試料+容器)質量g						
炉乾燥質量	容器質量g						
	$m_{ m s}$ g						
土 粒 子	の 密 度 $ ho_{ m s}$ $ m Mg/m^3$						
平 均	値 $ ho_{ m s}$ $ m Mg/m^3$						
胜到東頂					1		

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + [m_{s}(T_{1}) - m_{b}(T_{1})]} \rho_{w}(T_{1})$$

JIS A 1203 J G S 0 1 2 1

土の含水比試験

調査件名 豊川用水施設支線水路土質調査業務

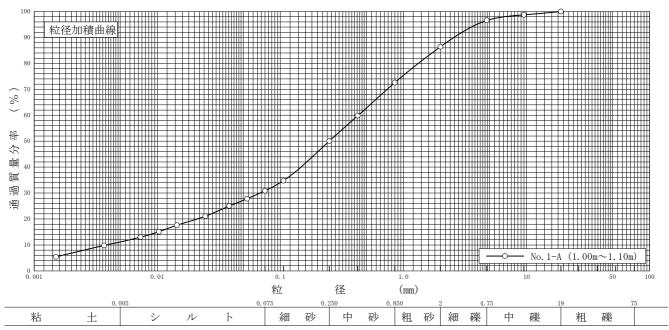
試験年月日 2025年 2月 14日

試	験	者	中嶋	愛
H. A		\vdash	1 , 100	2

				試 験 者 中嶋 愛					
試料番号 (深さ)	No. 1-A (1. 00~	~1. 10m)		No. 1−B (2. 00~2. 10m)					
容器 No.	50	51	52	53	54	55			
$m_{ m a}$ g	61.17	52. 85	53. 84	67. 54	68. 50	65. 02			
$m_{ ext{b}}$ g	57. 79	50. 34	51. 17	65. 46	66. 37	63. 05			
m_{\circ} g	31.01	30. 73	30. 61	31. 18	30. 93	29. 95			
w %	12.6	12.8	13. 0	6. 1	6. 0	6. 0			
平均值 w %		12.8			6. 0				
特記事項									
試料番号 (深さ)	No. 1-C (3. 00~	~3. 10m)							
容器 No.	56	57	58						
<i>m</i> a g	51. 30	48. 89	61. 38						
$m_{ m b}$ g	48. 23	46. 10	57. 33						
m_{\circ} g	29. 56	29. 29	30. 95						
w %	16. 4	16. 6	15. 4						
平均値 w %	10.1	16. 1	10.1						
特記事項		10.1							
10 EL 7 -8									
試料番号 (深さ)									
容器 No.									
<i>m</i> a g									
<i>т</i> ь g									
<i>m</i> · g									
w %									
平均值 w %									
特記事項									
= Notors H (New C.)									
試料番号 (深さ)									
容 器 No.									
<i>m</i> a g									
<i>т</i> ь g									
<i>m</i> ∘ g									
w %									
平均値 w %									
特記事項									
試料番号 (深さ)									
容器 No.									
<i>m</i> a g									
$m_{ m b}$ g									
<i>m</i> ∘ g									
w %									
平均値 w %									
特記事項									

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器

mb: (炉乾燥試料+容器)質量

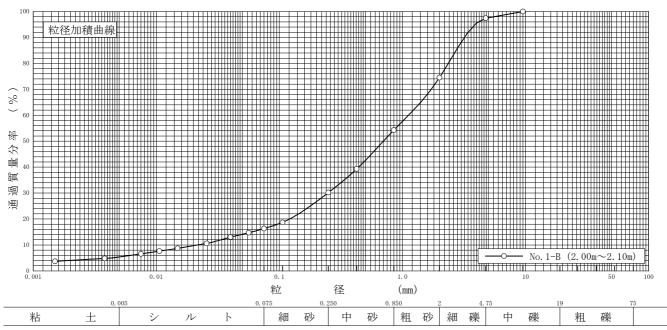

m。: 容器質量

の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	愛

試料番号	No. 1-A					試	料	番	号		No. 1-A	
(深 さ)	$(1.00\sim1.$	10m)				(深			さ)		(1.00~1.10m)	
	粒径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	磷	É	分		%	_	
	75		75		中		 E	分		%	3. 4	
Š	53		53		細			分		%	10. 2	
*5	37. 5		37. 5		粗	砂	 }	分		%	13.8	
る	26. 5		26. 5		中	砂	}	分		%	22.5	
a)	19	100.0	19		細	砂);	分		%	19. 2	
٧١	9. 5	98. 7	9. 5		シ	ル	<u>۱</u>	分		%	19. 7	
٧.	4. 75	96.6	4. 75		粘	±	-	分		%	11.2	
/\	2	86. 4	2		2mm .	ふるい	へ通過	質	量分	率 %	86.4	
分	0.850	72.6	0.850		425 إ	um So.	るい通	過質	量分率	枢 %	59.8	
ler.	0. 425	59.8	0. 425		75 μ	mふる	い通	過質	量分率	率 %	30.9	
析	0. 250	50.1	0. 250		最	大	粒	径		mm	19	
	0. 106	34.8	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.43	
	0. 075	30. 9	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 25	
	0.0536	27.8			30	%	粒	径	D_{30}	mm	0.069	
沈	0.0384	25. 0			10	%	粒	径	D_{10}	mm	0.0039	
<i>(</i> /L	0.0246	21. 1			均	等	係	数	$U_{\scriptscriptstyle m c}$		110	
降	0.0144	17.6	. = = = = = = = = = = = = = = = = = = =		曲	率	係	数	$U_{\rm c}'$		2.84	
	0.0103	15. 1			土米	立子	の密	度	ρ _s	Mg/m^3	2.667	
分	0.0073	13.0			使用	したか	分散剤	l			ヘキサメタ燐酸ナトリウム	
析	0.0037	9.8			溶液	濃度,	溶液	添加	量		20%, 10ml	
ועי	0.0015	5. 4			20	%	粒	径	D_{20}	mm	0.021	

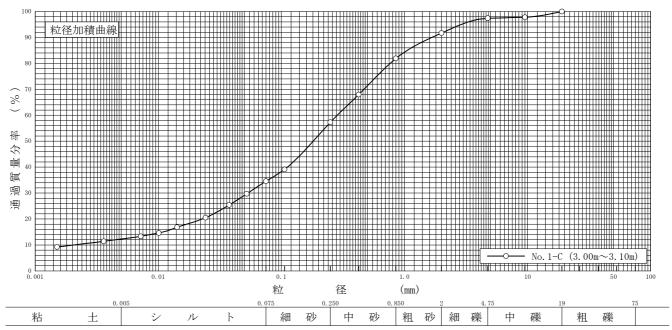


の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	憂
H- A	ルリンへ	. 🗆	1 700	/2

										-	1 1/9 🗻	
試料番号 (深 さ)	No. 1−B (2. 00∼2.	10)				試 (沒	料	番	号 さ)		No. 1-B (2. 00~2. 10m)	
(休 0)									<i></i>		(2.00 -2.1011)	
	粒 径 mm	通過質量分率%		通過質量分率%	粗	·	樂 	分		<u>%</u>		
	75		75	 	中		樂	分		%	2.6	
S	53		53		細	荷	樂 	分		%	22.9	
	37. 5		37. 5		粗	· · · · · · · · · · · · · · · · · · ·	沙	分		%	20.2	
る	26. 5		26. 5		中	₹	沙	分		%	24. 1	
ð	19		19		細	石	沙	分		%	13.9	
l)	9. 5	100.0	9. 5		シ	ル	ト	分		%	10.9	
٧,	4. 75	97.4	4. 75		粘		Ł	分		%	5. 4	
	2	74. 5	2		2mn	ふる	い通道	過質:	量分	率 %	74. 5	
分	0.850	54. 3	0.850		425	5 μ m S	るい通	過質	量分	率 %	39.3	
	0. 425	39. 3	0. 425		75 /	μm So Z	るい通	過質	量分	率 %	16. 3	
析	0. 250	30. 2	0. 250		最	大	粒	径		mm	9.5	
	0. 106	18. 7	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	1.1	
	0.075	16. 3	0. 075		50	%	粒	径	$D_{\rm 50}$	mm	0.70	
	0.0564	14. 7			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 25	
Nels	0.0401	13.0			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.022	
沈	0.0256	10.6			均	等	係	数	$U_{\scriptscriptstyle m c}$		50.0	
降	0.0149	8. 7			曲	率	係	数	$U_{\rm c}'$		2. 58	
	0.0106	7.6			土	粒 子	の密	度	$ ho_{ ext{s}}$	${\rm Mg/m^3}$	2.656	
分	0.0075	6. 6			使月	用した	分散剤	 IJ			ヘキサメタ燐酸ナトリウム	
析	0.0038	4.8			溶剂	夜濃度	,溶液	逐添力	量		20%, 10ml	
וער	0.0015	3. 7			20	%	粒	径	D_{20}	mm	0.12	
		•		•								



の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	恶
Dr.	心大	7 1	工品牌	.Æ.

											1 119 2	
試料番号	No. 1-C					試	料	番	号		No. 1-C	
(深 さ)	$(3.00\sim 3.$	10m)				(深	ŧ		さ)		(3.00∼3.10m)	
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	礩	<u></u>	分		%		
	75		75		中		É	分		%	2.6	
<i>ኤ</i>	53		53		細	礩	<u></u>	分		%	5. 7	
	37. 5		37. 5		粗	砂	<u></u>	分		%	9.8	
る	26. 5		26. 5		中	砂	l;	分		%	24. 6	
. 2	19	100.0	19		細	配	ļ;	分		%	22.7	
٧١	9. 5	97.8	9. 5		シ	ル	<u>۱</u>	分		%	22.3	
٧.	4. 75	97.4	4. 75		粘	±	-	分		%	12.3	
/\	2	91. 7	2		2mm	ふるい	へ通過	質	量分	率 %	91. 7	
分	0.850	81. 9	0.850		425	μms	るい通	過質	量分	枢 %	68. 0	
	0. 425	68. 0	0. 425		75 μ	mふる	i い通	過質	量分	率 %	34.6	
析	0. 250	57. 3	0. 250		最	大	粒	径		mm	19	
	0. 106	39. 1	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 29	
	0. 075	34. 6	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 18	
	0.0523	29. 7			30	%	粒	径	D_{30}	mm	0.054	
N.L.	0. 0376	25. 4			10	%	粒	径	D_{10}	mm	0.0021	
沈	0.0242	20. 5			均	等	係	数	$U_{\scriptscriptstyle m c}$		138	
降	0.0142	16.8			曲	率	係	数	U_{c}'		4. 79	
	0.0101	14. 6			土 #	位 子	の密	度	$\rho_{\rm s}$	${\rm Mg/m^3}$	2. 762	
分	0.0072	13. 3			使用	した。	 分散剤				ヘキサメタ燐酸ナトリウム	
1 5	0.0036	11.4			溶液	濃度,	溶液	添加	量		20%, 10ml	
析	0.0015	9. 2			20	%	粒	径	D_{20}	mm	0.023	

(4) 土質試験結果一覧表 (ボーリングNo.2-2)

土質試験結果一覧表(基礎地盤)

調查件名 豊川用水施設支線水路土質調査業務

整理年月日 2025年 3月 3日

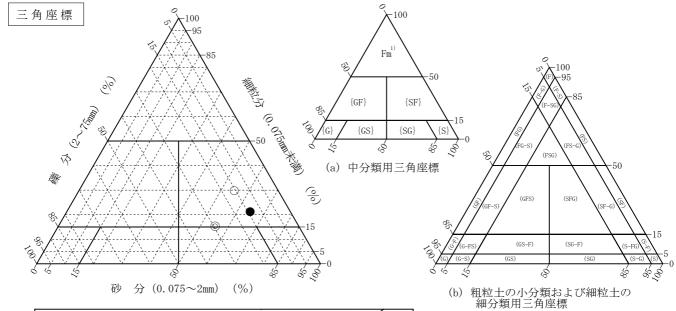
#6-7m [m \1/ +4	Lev 111 Mz -L-
整理担当者	松川 尚史

							整埋担当有	松川 向史	
活	料	番	号	No. 2-2-A	No. 2-2-B	No. 2-2-C			
(深	さ)	(1.00~1.10m)	(2.00∼2.10m)	(3.00∼3.10m)			
	湿潤密	度 ρt	${\rm Mg/m^3}$						
- ∫	乾 燥 密	度 ρd	${\rm Mg/m^3}$						
	土粒子の名	S度 ρ _s	Mg/m³	2. 694	2. 673	2.754			
	自然含水	比 w	%	14.8	7. 1	9. 3			
般	間隙	比 e							
	飽 和	度 S _r	%						
	石 分	(75mm	以上) %						
	礫 分1)	$(2 \sim 7.5)$	mm) %	15. 4	29. 4	14. 1			
粒	砂 分1)	(0. 075	-2mm) %	54.8	55. 2	64. 7			
	シルト分 1)	(0. 005~0.	075mm) %	19. 3	11.0	13. 4			
	粘土分1	(0.005n	nm未満) %	10.5	4. 4	7.8			
	最大粒	径	mm	9. 5	19	9. 5			
度	均等係	数 <i>U</i> 。		109	39. 4	57. 0			
	50%粒	径 D ₅	mm	0. 27	0.78	0.37			
コン	液性限	界 w	%						
コンシステンシー特性	塑性限	界 w _p	%	†					
シシ	塑性指	数 I _p							
特性	コンシステンシー指								
分	地盤材料	· 10)		粘性土質	粘性土質	礫まじり			
	分 類	名		礫質砂	礫質砂	粘性土質砂			
類	分類記	号		(SCsG)	(SCsG)	(SCs-G)			
	試験方	法							
圧	圧縮指	数 C。							
	圧密降伏点	5力 <i>p</i> 。	kN/m²						
密									
_	一軸圧縮強	it qu	kN/m²						
軸	一軸圧縮強	 食さ q u	kN/m²						
圧	一軸圧縮引								
縮	一軸圧縮引	iさ qu	kN/m^2						
	試 験 条								
せ		$\frac{1}{c}$	kN/m^2						<u> </u>
	全応力		 φ						
ん		c'	kN/m ²						
断	有効応力		 φ′°						
1-9/1									
	最小密		minMg/m ³						
	最大密								
				1	I	I .	1		İ

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$


調査件名 豊川用水施設支線水路土質調査業務

試験年月日

2025年 2月 21日

試	験	者	松川	尚史

	試	料	番	号		No. 2-2-A	No. 2-2-B	No. 2-2-C		
	(深	さ)		(1.00∼1.10m)	(2.00∼2.10m)	(3.00∼3.10m)		
石	分	(75mm	以上)	%					
礫	分	(2~7	5mm)		%	15. 4	29. 4	14. 1		
砂	分	(0.07	$5\sim2$	mm)	%	54.8	55. 2	64. 7		
細米	立分	(0.07	5mm≯	 :満)	%	29.8	15. 4	21. 2		
シル	ト分	(0.00	5~0	. 075m	m)%	19. 3	11.0	13. 4		
粘	上分	(0.00	5mm≯	∹満)	%	10. 5	4. 4	7. 8		
最	大	粒	径		mm	9. 5	19	9. 5	1	
均	等	係	数	U_{c}		109	39. 4	57. 0	1	
液	性	限	界	wL	%					
塑	性	限	界	$w_{\scriptscriptstyle extsf{P}}$	%					
塑	性	指	数	$I_{\scriptscriptstyle m p}$					1	
LIL AR	. I. I. Jol	- ())	m 6			粘性土質	粘性土質	礫まじり		
地盤	材料	の分類	隕名			礫質砂	礫質砂	粘性土質砂		
 分	類	記	号			(SCsG)	(SCsG)	(SCs-G)		
凡	例	記	号			0	©	•		

塑 性 図 100 I_{p} 数 (CH) 袻 <u>₩</u> 50 凝 (MH) 20 A線: I₁=0.73 (w1 -20) B線:w₁=50 (ML) 100 150 200 液 限 界 (%) wL

特記事項 1) 主に観察と塑性図で判別分類

JIS A 1202 JGS 0111

土 粒 子 の 密 度 試 験 (測定)

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 14日

試 験 者 中嶋 愛

			試		鳴 愛	
試料番号(深さ)	No. 2-2-A	(1.00~1.10m))	No. 2-2-B ($(2.00 \sim 2.10 \text{m})$)
ピクノメーターNo.	531	532	533	534	535	536
(試料+蒸留水+ピクノメーター) 質量 m $\wp(T_1)$ g	155. 247	156. 857	151. 823	158. 157	154. 626	149. 863
$m_{\mathbb{A}}(T_1)$ をはかったときの内容物の温度 T_1 \mathbb{C}	17.5	17. 5	17. 5	17. 5	17. 5	17. 5
T_1 ℃における蒸留水の密度 $\rho_w(T_1)$ Mg/n	n³ 0. 99868	0. 99868	0. 99868	0. 99868	0. 99868	0.99868
温度 T_1 Cの蒸留水を満たしたときの (蒸留水+ピクノメーター) 質量 $m_s(T_1)^1$)	144. 836	145. 976	140. 848	146. 526	141. 645	137.670
容 器 No.	531	532	533	534	535	536
試 料 の (炉乾燥試料+容器)質量g	102. 997	99. 840	105. 205	104. 046	106. 731	101.947
炉乾燥質量 容 器 質 量 g	86. 427	82. 594	87. 746	85. 471	86. 011	82. 489
$m_{ ext{ iny S}}$ g	16. 570	17. 246	17. 459	18. 575	20. 720	19. 458
土 粒 子 の 密 度 ρ _s Mg/	m³ 2. 687	2. 706	2. 689	2. 671	2. 674	2.675
平 均 値 ρ _s Mg/	m ³	2.694			2.673	
試料番号(深さ)	No. 2-2-C	(3.00∼3.10m))			
ピクノメーターNo.	537	538	539			
(試料+蒸留水+ピクノメーター)質量 $m_{\mathfrak{b}}(T_1)$ g	152. 837	159. 539	158. 130			
$m_{\mathfrak{s}}(T_{\mathfrak{l}})$ をはかったときの内容物の温度 $T_{\mathfrak{l}}$ \mathfrak{C}	17. 5	17.5	17. 5			
T_1 $^{\circ}$ Cにおける蒸留水の密度 $\rho_w(T_1)$ Mg/1	n³ 0. 99868	0. 99868	0. 99868			
温度 T_1 \mathbb{C} の蒸留水を満たしたときの $m_s(T_1)^{1)}$ g	140. 733	147. 508	146. 791			
容 器 No.	537	538	539			
試 料 の (炉乾燥試料+容器)質量g	103. 898	102. 642	105. 100			
炉乾燥質量 容 器 質 量 g	84. 946	83. 751	87. 286			
<i>m</i> s g	18. 952	18. 891	17.814			
土 粒 子 の 密 度 ρ _s Mg/	m³ 2. 764	2. 750	2. 748			
平 均 値 $ ho_{s}$ Mg/	m ³	2.754				
試料番号(深さ)		_				
ピクノメーター No.						
(試料+蒸留水+ピクノメーター)質量 m $\wp(T_1)$ g						
$m_{\mathfrak{s}}(T_{\mathfrak{l}})$ をはかったときの内容物の温度 $T_{\mathfrak{l}}$ ℃						
T_1 C における蒸留水の密度 $\rho_w(T_1)$ Mg/t	n ³					
温度 T_1 \mathbb{C} の蒸留水を満たしたときの $m_{\mathfrak{a}}(T_1)^{1)}$ g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
$m_{ m s}$ g						
土 粒 子 の 密 度 ρ _s Mg/	m ³					
平 均 値 ρ _s Mg/	m ³					

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + [m_{s}(T_{1}) - m_{b}(T_{1})]} \rho_{w}(T_{1})$$

JIS A 1203 J G S 0 1 2 1

土の含水比試験

調查件名 豊川用水施設支線水路土質調查業務

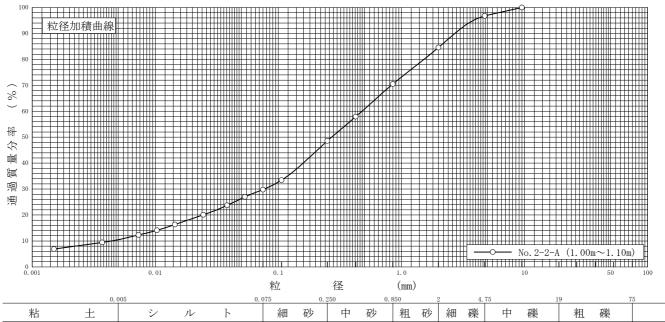
試験年月日 2025年 2月 14日

試	験	者	中嶋	愛
H. A		\vdash	1 , 100	2

				試 験 者	中嶋 愛	
試料番号 (深さ)	No. 2-2-A (1. 0	0~1.10m)		No. 2-2-B (2. 0	00~2.10m)	
容器 No.	59	60	61	62	63	64
$m_{\scriptscriptstyle \mathrm{a}}$ g	67. 13	74. 27	74. 58	86. 95	88. 40	86. 55
$m_{ m b}$ g	62. 22	68. 61	68. 75	83. 12	84. 40	82.82
<i>m</i> ∘ g	29. 66	29. 67	29. 51	29. 36	29. 73	29. 46
w %	15. 1	14. 5	14. 9	7. 1	7. 3	7. 0
平均值 w %	l .	14.8			7. 1	
特記事項						
試料番号 (深さ)	No. 2-2-C (3. 0	0~3.10m)				
容器 No.	65	66	67			
<i>m</i> a g	69. 85	72. 09	75. 26			
$m_{ m b}$ g	66. 54	68. 44	71. 44			
m_{\circ} g	30. 92	29. 52	29. 30			
w %	9. 3	9. 4	9. 1			
平均值 w %	0.0	9. 3	0.1			
特記事項		<i>3.</i> 0				
14 m + X						
試料番号 (深さ)						
容器 No.						
m _a g						
$m_{ m b}$ g						
$\frac{m_{\circ}}{w}$ $\frac{\mathrm{g}}{\%}$						
平均値 w %						
特記事項						
14 10 7 7						
武料番号 (深さ)						
容器 No.						
$m_{ m a}$ g						
$m_{ m b}$ g						
m_{\circ} g						
w %						
平均値 w %						
特記事項						
I				<u> </u>		
試料番号 (深さ)						
容器 No.						
$m_{ m a}$ g						
$m_{^{\mathrm{b}}}$ g						
<i>m</i> ∘ g						
w %				-		
平均值 w %	I					
特記事項						

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器)

m。: (炉乾燥試料+容器)質量

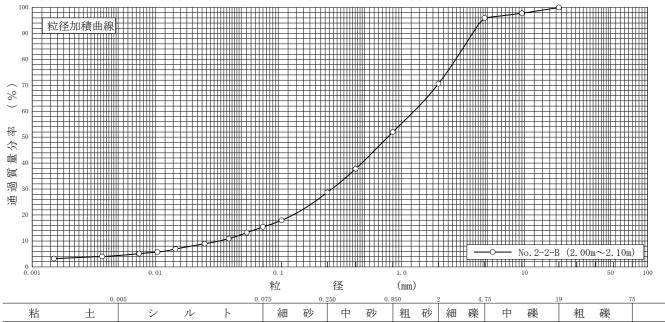

m。: 容器質量

の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	恶
DT/	闷火	111	十二	乏

試料番号	No. 2-2-A					試	料	番	号		No. 2-2-A	
(深 さ)	No. $2-2-A$ (1. $00\sim1$.	1 ()m)				(深		Ħ	っ さ)		(1.00~1.10m)	
	粒 径 mm	通過質量分率%	 粒 径 mm	通過質量分率%	粗			分		%	_	
-	75	是是黄星为 1 /0	75	是是黄星为 1 70	中	 硝		·/··		<u>-</u> %	3. 2	
	 53		53		' 細	 硝		 分		%	12. 2	
ふ.	37. 5		37. 5		粗	 砂		 分		%	14. 1	
	26. 5		26. 5		中	 砂		 分		%	21. 9	
る	19		19		細			- <u></u> - 分		%	18.8	
	9. 5	100. 0	9. 5		シ		٠	分		%	19. 3	
<i>۱</i> ۷	4. 75	96. 8	4. 75		 粘	 ±		分		%	10. 5	
	2	84. 6	2		2mm .		 ハ通過		 量分 ²	率 %	84. 6	
分	0. 850	70. 5	0.850		425	 μ m ふ	 るい通	過質		を %	57. 9	
	0. 425	57. 9	0. 425		75 μ	 mふる	 が通	 過質	 量分 [:]	率 %	29.8	
析	0. 250	48.6	0. 250		最	大	粒	径		mm	9.5	
	0. 106	33. 4	0. 106		60	%	粒	径	D_{60}	mm	0. 48	
	0. 075	29.8	0. 075		50	%	粒	径	D_{50}	mm	0. 27	
	0.0534	27. 0			30	%	粒	径	D_{30}	mm	0.077	
	0. 0383	23. 7			10	%	粒	径	D_{10}	mm	0.0044	
沈	0.0246	20. 1			均	等	係	数	$U_{\scriptscriptstyle m c}$		109	
降	0.0144	16.3			曲	率	係	数	$U_{\rm c}'$		2.81	
	0.0103	14. 1			土 #	位 子	の密	度	$\rho_{\rm s}$	${\rm Mg/m^3}$	2. 694	
分	0.0073	12.3			使用	した。	分散剤	J			ヘキサメタ燐酸ナトリウム	
析	0.0037	9.4			溶液	濃度,	溶液	添加	量		20%, 10ml	
וע	0.0015	6. 9			20	%	粒	径	$D_{^{20}}$	mm	0. 024	

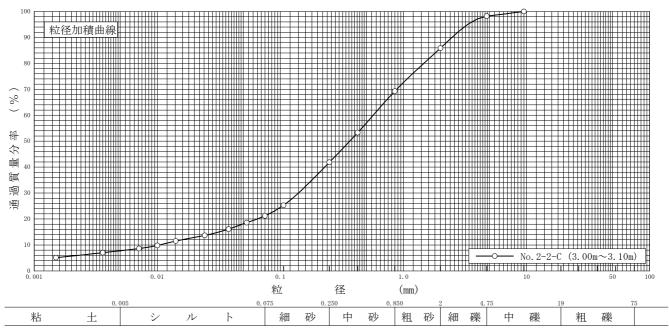


の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	愛

試料番号	No. 2-2-B					試	料-	番	号		No. 2-2-B	
(深 さ)	$(2.00\sim 2.$	10m)				(沒	Ĕ.		さ)		(2.00~2.10m)	
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	福	樂	分		%		
	75		75		中	福	樂	分		%	4.0	
Š	53		53		細		樂	分		%	25. 4	
	37. 5		37. 5		粗	石	少 	分		%	18.6	
る	26. 5		26. 5		中	石	少	分		%	23. 3	
2	19	100.0	19		細	- 石	少	分		%	13.3	
()	9. 5	97.8	9. 5		シ	ル	<u>۱</u>	分		%	11.0	
V .	4. 75	96.0	4. 75		粘		Ŀ 	分		%	4.4	
\wedge	2	70.6	2		2mm	ふる	い通道	過質:	量分	率 %	70.6	
分	0.850	52.0	0.850		425	μms	るい通	過質	量分率	枢 %	37.8	
45	0. 425	37.8	0. 425		75μ	m & ?	るい通	過質	量分	率 %	15. 4	
析	0. 250	28. 7	0. 250		最	大	粒	径		mm	19	
	0. 106	17.9	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	1.3	
	0.075	15. 4	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 78	
	0.0553	13. 2			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 27	
沈	0. 0395	10.9			10	%	粒	径	$D_{_{10}}$	mm	0.033	
<i>(</i> /L	0.0252	8.9			均	等	係	数	$U_{\scriptscriptstyle m c}$		39. 4	
降	0.0146	6.9			曲	率	係	数	$U_{\rm c}'$		1.70	
	0.0104	5. 7			土 *	位子	の密	度	ρ _s	Mg/m^3	2. 673	
分	0.0074	5. 1			使用	した	分散剤	IJ			ヘキサメタ燐酸ナトリウム	
析	0.0037	4.0			溶液	濃度	,溶液	逐添力	量		20%,10ml	
ועי	0.0015	3. 2			20	%	粒	径	$D_{^{20}}$	mm	0. 13	



の粒 度 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	恶
DT/	闷火	111	十二	乏

								- '			1 119 2	
試料番号	No. 2-2-C					試	料	番	号		No. 2-2-C	
(深 さ)	$(3.00\sim 3.$	10m)				(深			さ)		(3.00∼3.10m)	
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗		<u>{</u>	分		%		
	75		75		中	碑	<u>{</u>	分		%	1.8	
Š	53		53		細	碑	<u>{</u>	分		%	12.3	
	37. 5		37. 5		粗	砂	;	分		%	16.6	
る	26. 5		26. 5		中	砂	;	分		%	27.4	
.9	19		19		細	砂	>	分		%	20. 7	
W	9. 5	100.0	9. 5		シ	ル	ኑ	分		%	13. 4	
٧,	4. 75	98. 2	4. 75		粘	±	:	分		%	7.8	
^	2	85. 9	2		2mm	ふるレ)通過	質	量分	率 %	85. 9	
分	0.850	69. 3	0.850		425	μmss	るい通	過質	量分率	图 %	53. 3	
1	0. 425	53. 3	0. 425		75 μ	umふる	い通	過質	量分	率 %	21. 2	
析	0. 250	41.9	0. 250		最	大	粒	径		mm	9.5	
	0. 106	25. 3	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 57	
	0.075	21. 2	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 37	
	0.0533	18.6			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 14	
Sel-s	0.0380	16. 1			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.010	
沈	0.0243	13. 7			均	等	係	数	$U_{\scriptscriptstyle m c}$		57.0	
降	0.0141	11.5			曲	率	係	数	$U_{\rm c}'$		3. 44	
	0.0100	9.8			土 #	粒子	の密	度	$ ho_{ extsf{s}}$	${\rm Mg/m^3}$	2. 754	
分	0.0071	8.6			使用	目したが	分散剤				ヘキサメタ燐酸ナトリウム	
析	0.0036	7.0			溶液	凌濃度,	溶液	添加	量		20%,10ml	
171	0.0015	5. 1			20	%	粒	径	$D_{^{20}}$	mm	0.065	

(5) 土質試験結果一覧表 (ボーリングNo.3-1)

土質試験結果一覧表(基礎地盤)

調查件名 豊川用水施設支線水路土質調査業務

整理年月日

2025年 3月 3日

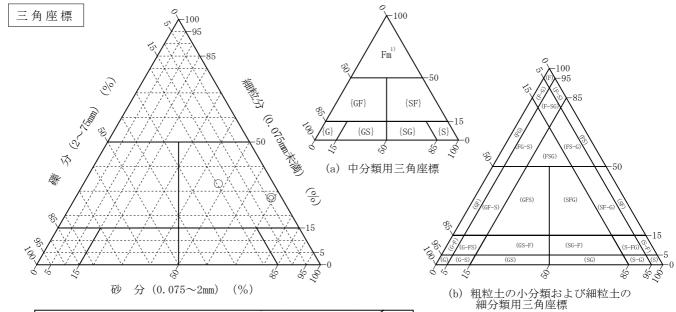
						整理担当者	松川 尚史
ì	料	番	号	No. 3-1-A	No. 3-1-B		

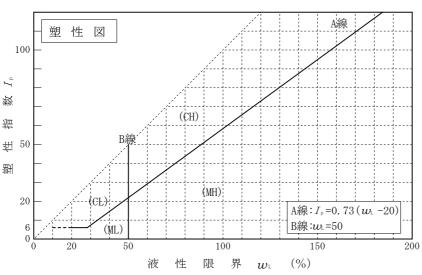
鴙		No. 3-1-A	No. 3-1-B			
((深さ)	$(1.00 \sim 1.10 \text{m})$	$(2.00\sim2.10\text{m})$			
	湿潤密度ρt Mg/m³					
-	乾 燥 密 度 ρ _d Mg/m³					
	土粒子の密度 ρ。 Mg/m³	2. 751	2. 830		 	
	自然含水比 w。 %	14. 9	12.8		 	
般	間 隙 比 <i>e</i>				 	
/11X					 	
	石 分 (75mm以上) %					
	礫 分¹¹(2~75mm)%	19. 4	3. 7		 	
粒	砂 分¹)(0.075~2mm)%	47. 6	69. 0		 	
	シルト分 ¹) (0. 005~0. 075mm) %	19. 6	20. 0		 	
	粘土分¹(0.005mm精)%	13. 4	7. 3		 	
	最大粒径 mm	19	9. 5		 	
,	均等係数 <i>U</i> 。	_	33. 0		 	
度	50%粒径 D ₅₀ mm	0. 22	0. 22		 	
	0 0 70 1 L D 30 IIII		0.22		 	
コ	液性限界 w L %					
シシス	塑性限界w。 %				 	
テン	型性指数 <i>I</i> 。				 	
コンシステンシー特性	金				 	
	地盤材料の	 粘性土質	粘性土質砂			
分	^地	礫質砂	和压工具物			
類	分 類 記 号	(SCsG)	(SCs)		 	
	試験方法	(30.86)	(SCS)			
圧	E 縮 指 数 C。				 	
	圧密降伏応力 <i>p</i> 。 kN/m²				 	
密					 	
	共正党かる 117/2					
<u></u>	一軸圧縮強さ q kN/m²				 	
軸圧	一軸圧縮強さ q kN/m²				 	
縮	一軸圧縮強さ q kN/m²				 	
	一軸圧縮強さ q kN/m²					
せ	試験条件				 	
4	全 応 力				 	
h	L				 	
	c' kN/m² 有効応力				 	
断	有 纫 応 刀				 	
	最小密度 p dmin Mg/m³				 	
	最大密度ρ _{dmax} Mg/m³				 	

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 \rightleftharpoons 0.0102kgf/cm^2]$


調査件名 豊川用水施設支線水路土質調査業務


試験年月日

2025年 2月 21日

試 験 者 松川	試	松川i	尚史
----------	---	-----	----

	試	料	番	号		No. 3-1-A	No. 3-1-B		
	(深	さ)		(1.00∼1.10m)	(2.00∼2.10m)		
石	分	(75mm	以上)	%				
礫	分	(2 ~ 7	5mm)		%	19. 4	3. 7		
砂	分	(0.07	5 ~ 2	mm)	%	47.6	69. 0		
細粒	立分	(0.07	5mm∄		%	33. 0	27.3		
シル	ト分	(0.00	5 ~ 0	.075m	m)%	19.6	20.0		
粘土	上 分	(0.00	5mm≠	 卡満)	%	13. 4	7. 3		
最	大	粒	径		mm	19	9. 5		
均	等	係	数	U_{c}		_	33. 0		
液	性	限	界	wL	%				
塑	性	限	界	$w_{\scriptscriptstyle extsf{P}}$	%				
塑	性	指	数	$I_{\scriptscriptstyle \mathrm{p}}$					
Lui, ém	4-1-101	- A	ar A			粘性土質	粘性土質砂		
地盤	材料	の分類	隕名			礫質砂			
分	類	記	号			(SCsG)	(SCs)		
凡	例	記	号			0	©		

特記事項 1) 主に観察と塑性図で判別分類

JIS A 1202 JGS 0111

土 粒 子 の 密 度 試 験 (測定)

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 17日

試	験	者	中嶋	憂
D-V	MX	^H	700	/2

			試	験 者 中	鳴 愛	
試料番号(深さ)	No. 3-1-A	(1.00~1.10m))	No. 3-1-B ((2.00~2.10m)	
ピ ク ノ メ ー タ ー No.	540	541	542	543	544	545
(試料+蒸留水+ピクノメーター) 質量 $m_s(T_1)$ g	147. 753	157. 304	152. 972	152. 990	150. 039	154. 630
$m_{\mathfrak{b}}(T_{\scriptscriptstyle 1})$ をはかったときの内容物の温度 $T_{\scriptscriptstyle 1}$ $^{\circ}$ C	17.5	17. 5	17. 5	17. 5	17. 5	17. 5
T_1 $^{\circ}$ $^{\circ$	0. 99868	0. 99868	0. 99868	0. 99868	0. 99868	0. 99868
温度 T_1 \mathbb{C} の蒸留水を満たしたときの (蒸留水+ピクノメーター) 質量 $m_s(T_1)^{1)}$ g	137. 604	146. 785	142. 888	141. 827	139. 195	143. 883
容 器 No.	540	541	542	543	544	545
試 料 の (炉乾燥試料+容器)質量g	100. 195	103. 126	101. 950	102. 726	99. 730	100. 382
炉乾燥質量 容 器 質 量 g	84. 292	86. 618	86. 083	85. 466	83. 005	83. 752
$m_{ m s}$ g	15. 903	16. 508	15. 867	17. 260	16. 725	16.630
土 粒 子 の 密 度 ρ _s Mg/m³	2.760	2. 753	2. 740	2. 827	2.840	2.823
平 均 値 $ ho_{\mathrm{s}}$ Mg/m³		2. 751			2.830	
試料番号(深さ)						
ピ ク ノ メ ー タ ー No.						
(試料+蒸留水+ピクノメーター) 質量 $m_{\mathfrak{s}}(T_1)$ g						
$m_{\mathfrak{t}}(T_{\mathfrak{t}})$ をはかったときの内容物の温度 $T_{\mathfrak{t}}$ $^{\circ}$						
T_1 ℃における蒸留水の密度 $\rho_w(T_1)$ Mg/m^3						
温度 T_1 \mathbb{C} の蒸留水を満たしたときの $m_s(T_1)^{1)}$ g (蒸留水+ピクノメーター) 質量 $m_s(T_1)^{1)}$						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
g						
土 粒 子 の 密 度 ρ _s Mg/m³						
平 均 値 ρ _s Mg/m³						
試料番号(深さ)						
ピクノメーター No.						
(試料+蒸留水+ピクノメーター) 質量 m ₁ (T ₁) g						
m (T_1) をはかったときの内容物の温度 T_1 $^{\circ}$ C						
T_1 °Cにおける蒸留水の密度 $\rho_w(T_1)$ Mg/m³						
温度 T_1 \mathbb{C} の蒸留水を満たしたときの $m_s(T_1)^{1)}$ g (蒸留水+ピクノメーター) 質量 $m_s(T_1)^{1)}$ g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
$m_{\scriptscriptstyle S}$ g						
土 粒 子 の 密 度 ρ _s Mg/m³						
平 均 値 ρ _s Mg/m³						
供 記 東 佰						

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + [m_{s}(T_{1}) - m_{b}(T_{1})]} \rho_{w}(T_{1})$$

JIS A 1203 J G S 0 1 2 1

土の含水比試験

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 14日

試	験	者	中嶋	愛
H. A		\vdash	1 , 100	2

			試験者中嶋愛					
試料番号 (深さ)	No. 3-1-A (1. 0	0~1.10m)		No. 3-1-B (2. 00~2. 10m)				
容器 No.	68	69	70	71	72 73			
$m_{ m a}$ g	72.09	70.05	77. 60	82. 28	85. 20	78. 13		
$m_{ ext{ iny b}}$ g	66. 64	64. 92	71. 51	76. 44	79.00	72. 77		
m_{\circ} g	29.65	31.00	30. 71	31. 10	30.74	31. 04		
w %	14. 7	15. 1	14. 9	12.9	12.8	12. 8		
平均值 w %	1	14. 9		,	12.8			
時 記 事 項								
<u>'</u>			-					
試料番号 (深さ)								
容器 No.								
m _a g								
$m_{ m b}$ g								
m_{\circ} g								
w %								
平均值 w %	<u> </u>							
寺 記 事 項								
試料番号 (深さ)								
容器 No.								
$m_{ m a}$ g								
$m_{ m b}$ g								
m_{\circ} g								
w %								
平均值 w %		<u> </u>						
特 記 事 項								
I			l.					
試料番号 (深さ)								
容器 No.								
$m_{\scriptscriptstyle \mathrm{a}}$ g								
$m_{ ext{ iny b}}$ g								
m_{\circ} g								
w %								
平均値 w %								
寺 記 事 項								
式料番号(深さ)								
字器 No.								
<i>m</i> a g								
<i>т</i> ь g								
<i>m</i> ₀ g								
w %								
平均值 w %								
寺 記 事 項								

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器

mb: (炉乾燥試料+容器)質量

m。: 容器質量

JIS A 1204 JGS 0131

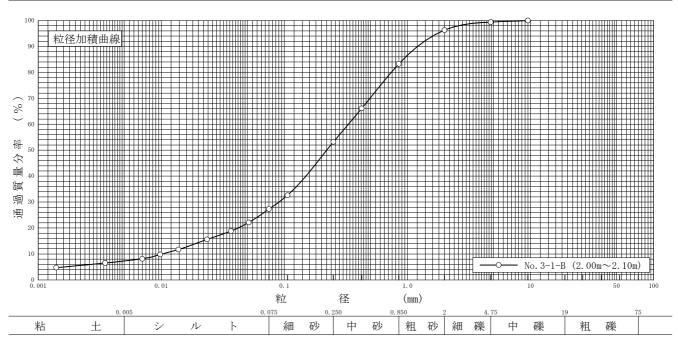

土 の 粒 度 試 験 (粒径加積曲線)

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 17日

試 験 者 中嶋 愛

試料番号 (深 さ)	No. 3-1-A (1. 00~1.	10m)				試 (深	料	番	号 さ)		No. 3-1-A (1. 00~1. 10m)	
(IK C)					. from			• • • • • • • • • • • • • • • • • • • •		- /		
	粒径 mm	通過質量分率%		通過質量分率%			<u>⊭</u> 	分		<u>%</u>	 	
	75		75		中		É 	分		%	10. 7	
s	53		53		細		É 	分		%	8.7	
	37. 5		37. 5		粗	砂); 	分		%	9.8	
る	26. 5		26. 5		中	砂	<u></u>	分		%	18. 2	
2	19	100.0	19		細	砂	ļ;	分		%	19. 6	
V	9. 5	93. 6	9. 5		シ	ル	١	分		%	19. 6	
٧,	4. 75	89. 3	4. 75		粘	±	<u>.</u>	分		%	13. 4	
	2	80.6	2		2mm	ふるい	へ通過]質	 量分 ²	 率 %	80.6	
分	0.850	70.8	0.850		425	μ m 🌫	 るい通	過質	量分率	声 %	60. 7	
	0. 425	60. 7	0. 425		75 μ	mふる	 い通	過質	量分	率 %	33. 0	
析	0. 250	52.6	0. 250		最	大	粒	径		mm	19	
	0. 106	37.6	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 41	
	0. 075	33. 0	0. 075		50	%	粒	径	D_{50}	mm	0. 22	
	0.0503	28. 4			30	%	粒	径	D_{30}	mm	0.058	
N.	0.0361	25. 1			10	%	粒	径	D_{10}	mm		
沈	0. 0233	21.3			均	等	係	数	U_{c}			
降	0.0137	17. 5			曲	率	係	数	U_{c}'		_	
	0.0097	15. 6			土丬	粒子	の密	度	ρs	Mg/m^3	2. 751	
分	0.0069	14. 2			使用	した!	分散剤				ヘキサメタ燐酸ナトリウム	
4r.	0.0035	12. 5			溶液	漫度,	溶液	添加	量		20%, 10ml	
析	0.0014	10. 2			20	%	粒	径	D_{20}	mm	0.020	



の粒 度 試 験 (粒径加積曲線)

調査件名 豊川用水施設支線水路土質調査業務

	試	験	者	中嶋	愛
--	---	---	---	----	---

試料番号	No. 3-1-B					試	料	番	号		No. 3-1-B	
(深 さ)	$(2.00\sim 2.$	10m)				(深		ш	さ)		(2.00∼2.10m)	
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	礫		分		%	_	
	75		75		中	礫		分		%	0.6	
Š	53		53		細	礫		分		%	3. 1	
	37. 5		37. 5		粗	砂		分		%	13.0	
る	26. 5		26. 5		中	砂		分		%	30. 1	
<i>a</i>	19		19		細	砂		分		%	25. 9	
٧١	9. 5	100.0	9. 5		シ	ル	<u>۱</u>	分		%	20.0	
V.	4. 75	99.4	4. 75		粘	土土		分		%	7. 3	
分	2	96. 3	2		2mm .	ふるレ	通過	質	量分率	率 %	96. 3	
)J	0.850	83. 3	0.850		425	μmふる	5い通	過質	量分率	× %	66. 1	
4m	0. 425	66. 1	0. 425		75 μ	mふる	い通	過質	量分率	枢 %	27. 3	
析	0. 250	53. 2	0. 250		最	大	粒	径		mm	9. 5	
	0. 106	32.6	0. 106		60	%	粒	径	D_{60}	mm	0.33	
	0. 075	27. 3	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 22	
	0.0514	22. 1			30	%	粒	径	D_{30}	mm	0.090	
沈	0.0368	18.8			10	%	粒	径	$D_{_{10}}$	mm	0.010	
1/L	0.0235	15. 6			均	等 	係	数	U_{c}		33. 0	
降	0.0138	11. 7			曲	率	係	数	$U_{\rm c}'$		2. 45	
	0.0098	9.8			土業	立子 (の密	度	ρs	Mg/m ³	2. 830	
分	0.0070	8. 1			使用	したケ	散剤				ヘキサメタ燐酸ナトリウム	
析	0.0035	6. 5			溶液	濃度,	溶液	添加	量		20%, 10ml	
νı	0.0014	4. 7			20	<u>%</u>	粒	径	D_{20}	mm	0.042	

(6) 土質試験結果一覧表(斜面部)

土質試験結果一覧表(基礎地盤)

調查件名 豊川用水施設支線水路土質調査業務

整理年月日 2025年 3月 3日

整理担当者	松川	尚史

						松川 向史
括)	t 料 番 号 (深 さ)	斜面上部A	斜面中部A	斜面中部B	斜面下部A	
	湿潤密度ρ _t Mg/m³					
_	乾燥密度 pt Mg/m³				 -	
	土粒子の密度 ρ _s Mg/m ³	2.744	2. 748	2. 739	2. 743	
		+			+	
		7. 2	11. 9	11. 9	13. 6	
Ļ	間 隙 比 <i>e</i> 飽 和 度 <i>S</i> _r %					
		46. 7	10.0	04.5	10.6	
į.	礫 分¹¹ (2~75mm) %	+	18. 2	24. 5	10.6	
•	砂 分¹ (0.075~2mm) %	40. 5	55. 3	55. 0	56. 1	
	シルト分 10 (0,005~0,075mm) %	7. 5	15. 9	13. 3	24. 2	
	粘土分10.005mm糒 %	 	10. 6	7. 2	9. 1	
	最大粒径mm	9. 5	9. 5	9. 5	19	
:	均 等 係 数 <i>U</i> 。	66. 7	177	77. 5	58. 3	
	50%粒径 D ₅₀ mm	1. 7	0.32	0. 55	0. 22	
	液性限界w %					
	塑性限界 🐠 %					
	塑性指数 I,					
	コンシステンシー指数 I。					
	地盤材料の	粘性土まじり	粘性土質	粘性土質	礫まじり	
	分 類 名	砂質礫	礫質砂	礫質砂	粘性土質砂	
į	分類記号	(GS-Cs)	(SCsG)	(SCsG)	(SCs-G)	
	試験方法					
:	圧 縮 指 数 C。					
	圧密降伏応力 p。 kN/m²					
	ー軸圧縮強さ q w kN/m²					
1	一軸圧縮強さ q u kN/m²					
:	一軸圧縮強さ q u kN/m²					
İ	一軸圧縮強さ q u kN/m²					
	試験条件	一面CD	一面CD	一面CD	一面CD	
	c kN/m ²	38	15	5	18	
	全応力	36. 2	46. 7	48. 8	36. 4	
,	c' kN/m²				† -	
:	有効応力					
	最小密度 p dminMg/m³					
	最大密度ρ _{dmax} Mg/m³					
				<u> </u>	†	
	<u> </u>	t			 	

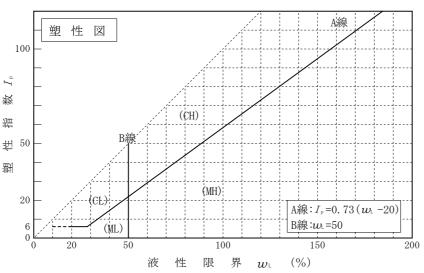
特記事項

 $[1kN/m^2 = 0.0102kgf/cm^2]$

¹⁾ 石分を除いた75mm未満の土質材料 に対する百分率で表す。

地盤材料の工学的分類

調査件名 豊川用水施設支線水路土質調査業務


試験年月日

2025年 2月 21日

試 験 者 松川	試	松川尚	者	験	試
----------	---	-----	---	---	---

	試	料	番	号		斜面上部A	斜面中部A	斜面中部B	斜面下部A	
	(深	さ)						
石	分	(75mm	以上)	%					
礫	分	(2~7	5mm)		%	46. 7	18. 2	24. 5	10.6	
砂	分	(0.07	$5 \sim 2$	mm)	%	40. 5	55. 3	55. 0	56. 1	
細 粒	分	(0.07	 5mm∋	卡満)	%	12.8	26. 5	20. 5	33. 3	
シルト	分	(0.00	5~0	. 075m	m)%	7. 5	15. 9	13. 3	24. 2	
粘土	分	(0.00	5mm>	卡満)	%	5. 3	10.6	7. 2	9. 1	
最	大	粒	径		mm	9. 5	9. 5	9. 5	19	
均(等	係	数	$U_{\rm c}$		66. 7	177	77. 5	58. 3	
液	性	限	界	wL	%					
塑(性	限	界	$w_{\scriptscriptstyle extsf{P}}$	%					
塑(性	指	数	$I_{\scriptscriptstyle \mathrm{p}}$						
tils fan de	Lakel	~ /\ \	cr. h			粘性土まじり	粘性土質	粘性土質	礫まじり	
地盤杉	才科	の分す	浿名			砂質礫	礫質砂	礫質砂	粘性土質砂	
分	類	記	号			(GS-Cs)	(SCsG)	(SCsG)	(SCs-G)	
凡 1	例	記	号			0	©	•	Δ	

特記事項 1) 主に観察と塑性図で判別分類

JIS A 1202 JGS 0111

土 粒 子 の 密 度 試 験 (測定)

調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 19日

試 験 者 中嶋 愛

			試	- 験 者 F	鳴 愛			
試料番号(深さ)	斜面上部A			斜面中部A				
ピクノメーターNo.	507	508	509	510	511	512		
(試料+蒸留水+ピクノメーター) 質量 m $_{\mathrm{l}}(T_{\mathrm{l}})$ g	151. 967	152. 906	149. 991	140. 313	154. 150	142. 849		
$m_{\mathfrak{s}}(T_{1})$ をはかったときの内容物の温度 T_{1} \mathbb{C}	17. 2	17.2	17. 2	17. 2	17. 2	17. 2		
$T_{\scriptscriptstyle 1}$ $^{\circ}$ Cにおける蒸留水の密度 $ ho_{\scriptscriptstyle w}(T_{\scriptscriptstyle 1})$ Mg/n	0. 99874	0. 99874	0. 99874	0. 99874	0. 99874	0. 99874		
温度 T_1 \mathbb{C} の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量 $m_{\mathfrak{s}}(T_1)^{1}$ g	142. 690	142. 824	139. 994	130. 747	145. 415	134. 011		
容 器 No.	507	508	509	510	511	512		
試 料 の (炉乾燥試料+容器)質量g	101. 257	101. 762	101. 029	90. 582	98. 382	88.780		
炉乾燥質量 容 器 質 量 g	86.656	85. 912	85. 330	75. 572	84. 652	74. 889		
<i>m</i> s g	14. 601	15. 850	15. 699	15. 010	13. 730	13.891		
土 粒 子 の 密 度 ρ _s Mg/n	n³ 2. 739	2. 744	2. 750	2. 754	2. 745	2.746		
平 均 値 ρ _s Mg/s	n ³	2.744			2.748			
試料番号(深さ)	斜面中部B			斜面下部A				
ピ ク ノ メ ー タ ー No.	513	514	515	516	517	518		
(試料+蒸留水+ピクノメーター) 質量 $m_{\rm b}(T_1)$ g	150. 255	151. 832	152. 095	148. 131	147. 847	152. 812		
$m_{\mathfrak{s}}(T_{\mathfrak{l}})$ をはかったときの内容物の温度 $T_{\mathfrak{l}}$ \subset	17. 2	17. 2	17. 2	17. 2	17. 2	17. 2		
T_1 $^{\circ}$ における蒸留水の密度 $ ho_w(T_1)$ Mg/m	0. 99874	0. 99874	0.99874	0. 99874	0. 99874	0. 99874		
温度 T_i \mathbb{C} の蒸留水を満たしたときの $($ 蒸留水+ピクノメーター $)$ 質量 $m_{\mathfrak{s}}(T_1)^{1}$ g	140. 460	141.602	141. 776	139. 280	138. 200	143. 579		
容 器 No.	513	514	515	516	517	518		
試料の(炉乾燥試料+容器)質量g	101. 757	102. 571	97. 659	98. 542	98. 119	102. 345		
炉乾燥質量 容 器 質 量 g	86. 366	86. 466	81. 390	84. 623	82. 940	87.832		
<i>m</i> _s g	15. 391	16. 105	16. 269	13. 919	15. 179	14. 513		
土 粒 子 の 密 度 ρ _s Mg/s	n³ 2.747	2. 738	2. 731	2. 743	2. 740	2.745		
平 均 値 ρ _s Mg/s	n ³	2. 739		2. 743				
試料番号(深さ)								
ピ ク ノ メ ー タ ー No.								
(試料+蒸留水+ピクノメーター) 質量 $m_{\mathfrak{b}}(T_1)$ g								
$m_{\mathfrak{t}}(T_{\scriptscriptstyle 1})$ をはかったときの内容物の温度 $T_{\scriptscriptstyle 1}$ ℃	:							
T_1 °Cにおける蒸留水の密度 $\rho_w(T_1)$ Mg/m	l ³							
温度 T_i \mathbb{C} の蒸留水を満たしたときの $m_a(T_1)^1$ g								
容 器 No.			 					
試 料 の (炉乾燥試料+容器)質量g								
炉乾燥質量 容 器 質 量 g								
g								
土 粒 子 の 密 度 ρ _s Mg/s	n ³							
平 均 値 ρ _s Mg/s	n ³							

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + [m_{s}(T_{1}) - m_{b}(T_{1})]} \rho_{w}(T_{1})$$

JIS A 1203 J G S 0 1 2 1

土の含水比試験

調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 18日

試	験	者	中嶋	愛
H- A	NO.	. 🗆	1 709	/2

試料番号(深る	<u>;</u>)	斜面上部A			斜面中部A				
容器 No.		1	2	3	4	5	6		
$m_{\scriptscriptstyle \mathrm{a}}$	g	92. 91	97. 35	102. 17	91. 32	99. 58	79. 18		
т ь {	g	88. 82	93. 00	97. 19	84. 85	92. 30	74.05		
m_{\circ}	g	30. 93	31. 28	30. 98	31. 07	30. 66	30. 50		
w	%	7. 1	7.0	7.5	12. 0	11.8	11.8		
平均值w	%		7.2			11. 9			
特記事工	頁								
					T				

試料番号 (深さ)	斜面中部B			斜面下部A		
容器 No.	7	8	9	10	11	12
$m_{\rm a}$ g	70.97	80. 52	73. 20	81. 26	83. 05	100.38
<i>т</i> ь g	66. 74	75. 09	68. 79	75. 27	76. 83	91.88
m_{\circ} g	30. 90	30.95	30. 67	30. 99	30. 82	30. 78
w %	11.8	12.3	11.6	13. 5	13. 5	13. 9
平均值 w %		11.9			13. 6	
特記事項						

rice up y	
容器 No.	
ma g	
т ь g	
<i>m</i> ∘ g	
w %	
平均値 w %	
特記事項	

 試料番号 (深さ)			
容 器 No.			
谷 奋 NO.	 	 	
$m_{\scriptscriptstyle \mathrm{a}}$ g			
т ь g			
<i>m</i> ∘ g			
w %			
平均值 w %			
特 記 事 項			

試料番号 (深さ)			
容器 No.			
m _a g			
$m_{\scriptscriptstyle \mathrm{b}}$ g			
$m_{\scriptscriptstyle \mathrm{C}}$ g			
w %			
平均值 w %			
特記事項			

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器

mь: (炉乾燥試料+容器)質量


m。: 容器質量

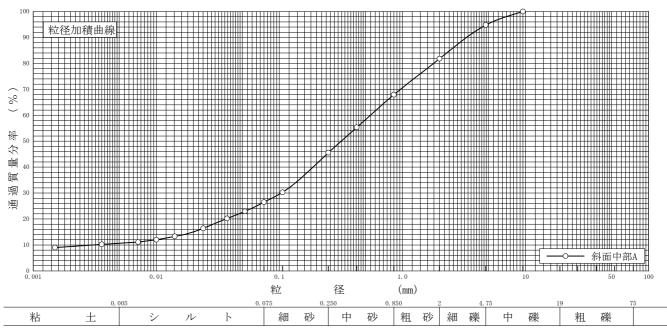
度 の粒 試 験 (粒径加積曲線)

調查件名 豊川用水施設支線水路土質調查業務

試	験	者	中嶋	愛

計算器									н ,			一场支	
粒径 mm 通過質量分率% 粒径 mm 通過質量分率% 相 礫 分 % 中 礫 分 % 20.6		斜面上部A							番	-		斜面上部A	
か 75 中 礫 分 % 20.6 53 53 細 礫 分 % 26.1 37.5 37.5 粗 砂 分 % 13.7 26.5 26.5 中 砂 分 % 16.1 19 19 細 砂 分 % 10.7 9.5 100.0 9.5 シ ル ト 分 % 7.5 4.75 79.4 4.75 粘 土 分 % 5.3 2 53.3 2 2mmふるい通過質量分率 % 53.3 0.850 39.6 0.850 425 μ m ふるい通過質量分率 % 30.0 0.425 30.0 0.425 75 μ m ふるい通過質量分率 % 12.8 0.250 23.5 0.250 最 大 粒 径 mm 9.5 0.106 14.6 0.106 60 % 粒 径 D ₆₀ mm 1.7 0.0545 11.5 30 % 粒 径 D ₅₀ mm 0.42 0.0388 10.0 10 % 粒 径 D ₅₀ mm 0.039 次 4 5 9 使用した分散剤 ペキリ外離ナリ東藤ナリウム の.0102 6.8 土 粒 子 の 密度 ρ。 Mg/m 2.744 分 0.0036 4.7 2.744 2.0% 10ml <td>(M C)</td> <td>粒 径 mm</td> <td>通過質量分率%</td> <td>粒 径 mm</td> <td>通過質量分率%</td> <td>粗</td> <td></td> <td></td> <td>分</td> <td></td> <td></td> <td>_</td> <td></td>	(M C)	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗			分			_	
ふ 53 53 細 礫 分 % 26.1 37.5 37.5 粗 砂 分 % 13.7 26.5 26.5 中 砂 分 % 16.1 19 19 細 砂 分 % 10.7 い 9.5 100.0 9.5 シ ル ト 分 % 7.5 4.75 79.4 4.75 粘 土 分 % 5.3 2 53.3 2 2mmふるい通過質量分率% 53.3 0.850 39.6 0.850 425 μ m ふるい通過質量分率% 30.0 0.425 30.0 0.425 75 μ m ふるい通過質量分率% 12.8 0.250 23.5 0.250 最 大 粒 径 mm 9.5 0.106 14.6 0.106 60 % 粒 径 D _{so} mm 1.7 次0.075 12.8 0.075 50 % 粒 径 D _{so} mm 0.42 次0.0388 10.0 10 % 粒 径 D _{so} mm 0.039 0.0247 8.8 均 等 係 数 U _s 66.7 降 0.0102 6.8 土 粒 子 の 密度 ρ _s Mg/m² 2.744 分 0.0072 5.9 使用した分散剤 ヘキナケ原酸 ハーマキケアを設けりり入 が液液液皮皮、溶液液流の 20%,10m1 20%,10m1						+						20.6	
37.5 37.5 相 砂 分 % 13.7 26.5 26.5 中 砂 分 % 16.1 19 19 19 細 砂 分 % 10.7 29.5 100.0 9.5 シルト分 % 7.5 4.75 79.4 4.75 粘 土 分 % 5.3 2 53.3 2 2mmふるい通過質量分率 % 53.3 0.850 39.6 0.850 425μmふるい通過質量分率 % 30.0 0.425 30.0 0.425 75μmふるい通過質量分率 % 12.8 0.250 23.5 0.250 最 大 粒 径 mm 9.5 0.106 14.6 0.106 60 % 粒 径 D ₆₀ mm 2.6 0.075 12.8 0.075 50 % 粒 径 D ₅₀ mm 1.7 0.0545 11.5 30 % 粒 径 D ₅₀ mm 0.42 沈 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.42 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.039 0.0247 8.8 均 等 係 数 U 66.7 降 0.0143 7.6 曲 率 係 数 U 66.7 降 0.0102 6.8 土 粒子の密度 ρ。 Mg/m³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサケ腫トリウム 溶液濃度、溶液添加量 20%,10m1	کے	53		53		細	 7	 礫	分		%	 	
19 19 19 20 20 10.7 20 10.7 20 20 10.7 20 20 10.7 20 20 20 20 20 20 20 20 20 20 20 20 20	∞,	37. 5		37. 5		粗	;	 砂	分		%	†	
19 19 19 20 10 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	z	26. 5		26. 5		中	;	 砂	分		%	16. 1	
1	ري م	19		19		細	;	 砂	分		%	10.7	
4.75	1.5	9. 5	100.0	9. 5		シ	ル	<u>۱</u>	分		%	7.5	
分 0.850 39.6 0.850 425μmふるい通過質量分率% 30.0 0.425 30.0 0.425 75μmふるい通過質量分率% 12.8 0.250 23.5 0.250 最大粒径 mm 9.5 0.106 14.6 0.106 60%粒径 D ₆₀ mm 2.6 0.075 12.8 0.075 50%粒径 D ₅₀ mm 1.7 0.0545 11.5 30%粒径 D ₅₀ mm 0.42 0.0388 10.0 10%粒径 D ₁₀ mm 0.039 0.0247 8.8 均等係数 U _c 66.7 降 0.0143 7.6 曲率係数 U _c 1.74 0.0102 6.8 土粒子の密度 ρ _s Mg/m³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサメタ離ナトリウム 溶液濃度、溶液添加量 が濃度、溶液添加量 20%, 10ml	,	4. 75	79. 4	4. 75		粘		土	分		%	5.3	
析 39.6 0.850 39.6 0.850 425μmふるい通過質量分率 % 30.0 0.425 30.0 0.425 75μmふるい通過質量分率 % 12.8		2	53. 3	2		2mn	nふる	い通i	過質	量分	率 %	53.3	
析 0. 250 23. 5 0. 250 最大粒径 mm 9. 5 0. 106 14. 6 0. 106 60 %粒径 D ₆₀ mm 2. 6 0. 075 12. 8 0. 075 50 %粒径 D ₅₀ mm 1. 7 0. 0545 11. 5 30 %粒径 D ₅₀ mm 0. 42 0. 0388 10. 0 10 %粒径 D ₁₀ mm 0. 039 沈 5 係数 U _c 66. 7 降 0. 0143 7. 6 曲率係数 U _c 1. 74 0. 0102 6. 8 土粒子の密度 ρ ₅ Mg/m³ 2. 744 分 0. 0072 5. 9 使用した分散剤 ヘキサメタ(離ナトリウム 溶液濃度、溶液添加量 20%、10m1	ガ	0.850	39. 6	0.850		425	5μm&	るい追	通過質	量分	率 %	30.0	
0.250 23.5 0.250 最 大 粒 径 mm 9.5 0.106 14.6 0.106 60 % 粒 径 D ₆₀ mm 2.6 0.075 12.8 0.075 50 % 粒 径 D ₅₀ mm 1.7 0.0545 11.5 30 % 粒 径 D ₃₀ mm 0.42 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.039	1	0. 425	30.0	0. 425		75	μms	るい通	過質	量分	率 %	12.8	
0.075 12.8 0.075 50 % 粒 径 D ₅₀ mm 1.7 0.0545 11.5 30 % 粒 径 D ₃₀ mm 0.42 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.039 次 0.0247 8.8 均 等 係 数 U _c 66.7 降 0.0143 7.6 曲 率 係 数 U _c ' 1.74 0.0102 6.8 土 粒 子 の 密 度 ρ _s Mg/n³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサメタ離ナトリウム 溶液濃度,溶液添加量 20%,10ml 析	彻	0. 250	23. 5	0. 250		最	大	粒	径		mm	9. 5	
0.0545 11.5 30 % 粒 径 D ₃₀ mm 0.42 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.039 次 等 係 数 U _c 66.7 降 0.0143 7.6 曲 率 係 数 U _c 1.74 0.0102 6.8 土 粒 子 の 密 度 ρ _c Mg/m³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサメタ (株) サメウム (株) (株) (株) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大		0. 106	14. 6	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	2.6	
次 0.0388 10.0 10 % 粒 径 D ₁₀ mm 0.039 0.0247 8.8 均 等 係 数 U _c 66.7 降 0.0143 7.6 曲 率 係 数 U _c 1.74 0.0102 6.8 土 粒 子 の 密 度 ρ _s Mg/m³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサメタ欄サトリウム 溶液濃度,溶液添加量 20%,10ml 析 0.0036 4.7 溶液濃度,溶液添加量 20%,10ml		0. 075	12.8	0. 075		50	%	粒	径	D_{50}	mm	1.7	
 次 等係数Uc 66.7 0.0143 7.6 曲率係数Uc 1.74 0.0102 6.8 土粒子の密度ρ。Mg/m³ 2.744 0.0072 5.9 使用した分散剤 ヘキサメタ騒ナトリウム 溶液濃度,溶液添加量 20%,10ml 		0.0545	11.5			30	%	粒	径	D_{30}	mm	0.42	
0.0247 8.8 均等係数 U _c 66.7 0.0143 7.6 曲率係数 U _c 1.74 0.0102 6.8 土粒子の密度ρ _s Mg/m³ 2.744 分	ùt-	0.0388	10.0			10	<u>%</u>	粒	径	D_{10}	mm	0.039	
0.0102 6.8 土粒子の密度ρ。 Mg/m³ 2.744 分 0.0072 5.9 使用した分散剤 ヘキサメタ欄をトリウム溶液濃度、溶液添加量 20%、10ml	1/L	0.0247	8.8			均	等	係	数	$U_{\scriptscriptstyle m c}$		66. 7	
分 0.0072 5.9 使用した分散剤 ヘキサメタ欄をトリウム 析 0.0036 4.7 溶液濃度,溶液添加量 20%,10ml	降	0.0143	7.6			曲	率	係	数	$U_{\rm c}'$		1. 74	
が、0.0072 3.9 次元 でたがある。		0.0102	6.8			土	粒子	の 窖	度	ρ _s	Mg/m ³	2.744	
析	分	0.0072	5. 9			使人	用した	分散剤	FI			ヘキサメタ燐酸ナトリウム	
0.0015 3.3 20 % 粒 径 D ₂₀ mm 0.19	析	0.0036	4.7			溶剂	液濃度	, 溶液	友添力	量		20%, 10ml	
	ν ι	0.0015	3.3			20	<u>%</u>	粒	径	D_{20}	mm	0. 19	

JIS A 1204 JGS 0 1 3 1


度 の粒 試 験 (粒径加積曲線)

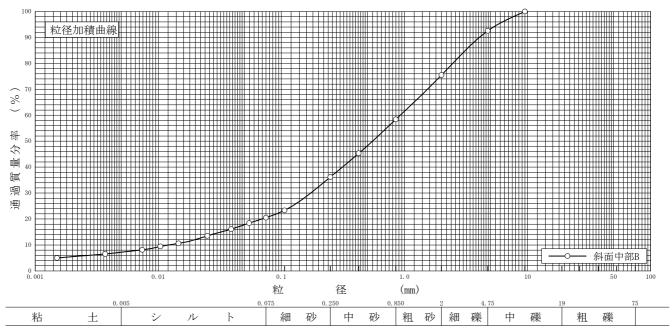
調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 19日

試	験	者	中嶋	孤
D-V	心大	7	工 品岡	友

											1 119 2	
試料番号	斜面中部A					試	料	番	号		斜面中部A	
(深 さ)						()	七		さ)			
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	·	樂	分		%		
	75		75		中	石	樂	分		%	5. 2	
ふ	53		53		細	石	樂	分		%	13. 0	
	37. 5		37. 5		粗	· · · · · · · · · · · · · · · · · · ·	沙	分		%	13.9	
る	26. 5		26. 5		中	7	沙	分		%	22. 3	
<i>a</i>	19		19		細	₹	沙	分		%	19. 1	
l)	9. 5	100.0	9. 5		シ	ル	<u>۱</u>	分		%	15. 9	
, ·	4. 75	94.8	4. 75		粘		Ł	分		%	10.6	
^	2	81.8	2		2mn	ふる	い通道	過質:	量分	率 %	81.8	
分	0.850	67.9	0.850		425	5 μ m &	るい通	過質	量分	率 %	55.3	
	0. 425	55. 3	0. 425		75 /	μms>	るい通	過質	量分	率 %	26. 5	
析	0. 250	45.6	0. 250		最	大	粒	径		mm	9. 5	
	0. 106	30.3	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 55	
	0.075	26. 5	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0.32	
	0.0524	22.9			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 10	
\d	0.0375	20.2			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.0031	
沈	0.0241	16.4			均	等	係	数	$U_{\scriptscriptstyle m c}$		177	
降	0.0141	13. 3			曲	率	係	数	$U_{\rm c}'$		5. 87	
	0.0100	12.0			土	粒子	の密	度	$ ho_{ extsf{s}}$	${\rm Mg/m^3}$	2.748	
分	0.0071	11.1			使月	用した	分散剤	IJ			ヘキサメタ燐酸ナトリウム	
析	0.0036	10.2			溶剂	夜濃度	,溶液	逐添力	量		20%, 10ml	
וער	0.0015	9.0			20	%	粒	径	D_{20}	mm	0.037	
			,									

JIS A 1204 JGS 0 1 3 1


の粒 度 試 験 (粒径加積曲線)

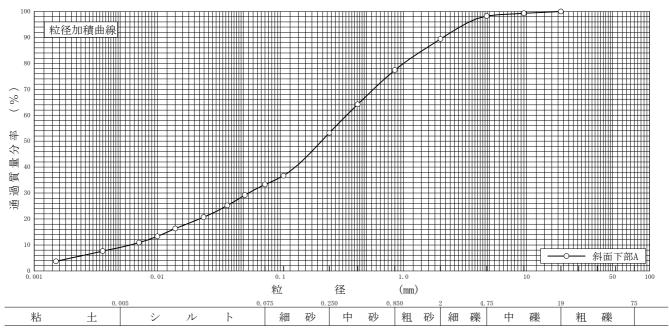
調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 19日

試	験	者	中嶋	愛

					ı —						1 7 0 多	
試料番号	斜面中部B						料	番	号		斜面中部B	
(深 さ)						(深			さ)			
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	礫		分		%		
	75		75		中	礫		分		%	7.4	
ふ .	53		53		細	礫		分		%	17. 1	
	37. 5		37. 5		粗	砂		分		%	17. 1	
る	26. 5		26. 5		中	砂		分		%	22. 2	
ري -	19		19		細	砂		分		%	15. 7	
٧١ -	9. 5	100.0	9. 5		シ	ル	<u>۱</u>	分		%	13. 3	
ζ,	4. 75	92.6	4. 75		粘	土		分		%	7. 2	
	2	75. 5	2		2mm -	ふるい	/通過	質量	量分≅	≤ %	75. 5	
分	0.850	58.4	0.850		425 µ	u m ふる	 5い通	過質	量分率	š %	45. 3	
_	0. 425	45. 3	0. 425		75 μ	mふる	· 通	過質	量分率	₫ %	20. 5	
析	0. 250	36. 2	0. 250		最	大	粒	径		mm	9. 5	
	0. 106	23.3	0. 106		60	%	粒	径	D_{60}	mm	0. 93	
	0. 075	20.5	0. 075		50	%	粒	径	D_{50}	mm	0. 55	
	0. 0547	18.4			30	%	粒	径	D_{30}	mm	0. 17	
).I	0. 0391	16. 1			10	%	粒	径	D_{10}	mm	0.012	
沈	0. 0250	13. 5			均	等	係	数	$U_{\rm c}$		77. 5	
降	0. 0146	10.6			曲	率	係	数	$U_{\rm c}'$		2. 59	
	0. 0104	9.4			土米	立子(の 密	度	$ ho_{ m s}$	Mg/m³	2. 739	
分	0.0074	8.1			使用	した矣	 計剤				ヘキサメタ燐酸ナトリウム	
析	0.0037	6.5			溶液	濃度,	溶液	添加	量		20%, 10ml	
1)T	0.0015	5. 0			20	%	粒	径	D_{20}	mm	0.070	

JIS A 1204 JGS 0 1 3 1


の粒度 試 験 (粒径加積曲線)

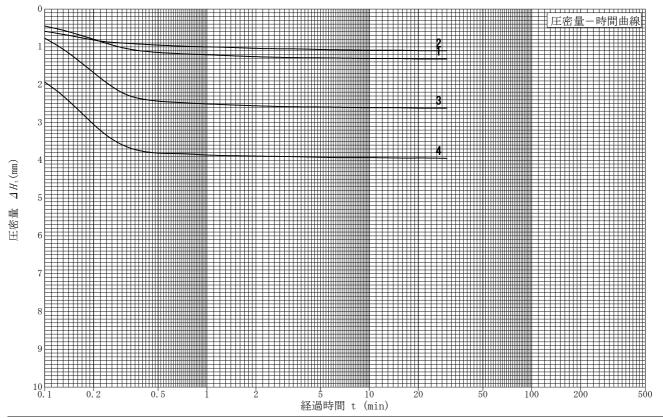
調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 19日

試	験	者	中嶋	愛

								µ~√	的大	1	11% 友	
試料番号 (深 さ)	斜面下部A	1				試 (深	料	番	号 さ)		斜面下部A	
	粒径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗	硝		分		%	_	
	75		75		中		 E	分		%	1. 7	
ふ	53		53		細	0		分		%	8.9	
55	37. 5		37. 5		粗	配	 }	分		%	12.0	
る	26. 5		26. 5		中	配	}	分		%	24. 2	
. 2	19	100.0	19		細	配	l;	分		%	19. 9	
V١	9. 5	99. 3	9. 5		シ	ル	<u>۱</u>	分		%	24. 2	
V .	4. 75	98. 3	4. 75		粘	£	<u>.</u>	分		%	9. 1	
^	2	89. 4	2		2mm	ふるい	へ通過	質量	量分₹	图%	89. 4	
分	0.850	77.4	0.850		425	μms	るい通	過質	量分率	š %	64. 2	
le:	0. 425	64. 2	0. 425		75 μ	umふる	い通	過質	量分率	≅ %	33. 3	
析	0. 250	53. 2	0. 250		最	大	粒	径		mm	19	
	0. 106	36. 7	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.35	
	0. 075	33. 3	0.075		50	%	粒	径	D_{50}	mm	0. 22	
	0. 0515	29. 2			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 055	
沈	0.0370	25. 2			10	%	粒	径	D_{10}	mm	0.0060	
<i>il</i> L	0.0238	20. 7			均	等	係	数	$U_{\scriptscriptstyle m c}$		58.3	
降	0.0140	16. 3			曲	率	係	数	$U_{\rm c}'$		1. 44	
	0.0100	13. 3			土	粒子	の密	度	ρ_{s}	Mg/m ³	2. 743	
分	0.0071	10. 9			使用	した。	分散剤				ヘキサメタ燐酸ナトリウム	
析	0.0036	7. 6			溶液	凌濃度,	溶液	添加	量		20%, 10ml	
ועי	0.0015	3. 7			20	%	粒	径	D_{20}	mm	0.022	

(7) 土の一面せん断試験結果(斜面部)


調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 17日

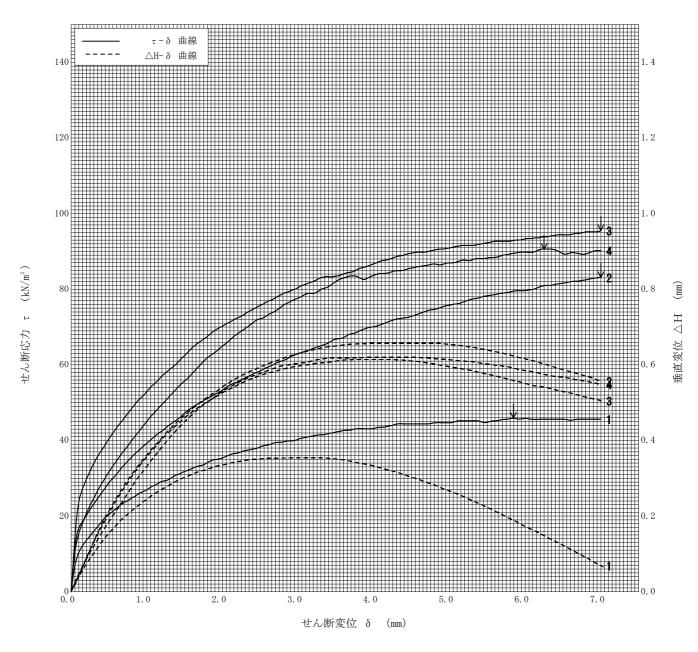
試料番号(深さ) 斜面上部A

試 験 者 松川 尚史

試	土	質	名	称		(GS-Cs)	土粒子の密度 $ ho_s$ Mg/m³	2. 744	試	垂直力の加圧形式	電動モータージャッキ式
	最	大	粒	径	mm		液性限界 w . % ¹⁾		験	垂直力荷重計の位置	反力板側
料	状			態		乱さない	塑性限界 w % 1)		機の	垂直力載荷装置の位置	下面
供試	直		径	D	mm	60.0	断 面 積 A mm²	28. 27×10^{2}	形	可 動 箱	上箱
本	作	製	方	法		カッターリンク゛法			式	すき間の設定方法	すき間設定ねじ
供	試	体	No	o .		1	2	3		4	
圧	密	応り	力 d	σ _c]	kN/m²	25	45	65		85	
	高		さ	H_0	mm	20.00	20.00	20.00		20.00	
初	湿;	潤質	量	m_0	g	96. 30	93. 32	94. 45		89. 15	
	炉草	吃燥質	量	<i>m</i> s	g	72. 37	74. 73	68. 47		63. 17	
期	含	水	比	w_0	%	33. 1	24. 9	37. 9		41. 1	
	実	質 高	z	$H_{\rm s}$	mm	9. 33	9.63	8.83		8. 14	
状	湿	潤 密	度	$ ho_{ m t0}$	${\rm Mg/m^3}$	1. 703	1.650	1.670		1.576	
	乾;	燥密	度	$ ho_{ m d0}$	${\rm Mg/m^3}$	1. 280	1. 321	1. 211		1. 117	
態	間	隙	比	$e_{\scriptscriptstyle 0}$		1. 144	1. 077	1. 265		1. 457	
	飽	和	度	S_{r0}	%	79. 4	63. 4	82. 2		77. 4	
圧	圧	密時	間	$t_{ m c}$	min	30	30	30		30	
	最終	冬圧茗	量	ΔH	c mm	1.32	1.10	2.62		3. 95	
密	高		さ	H_{c}	mm	18.68	18. 90	17. 38		16. 05	
**	乾	燥密	度	$ ho_{ m dc}$	${\rm Mg/m^3}$	1. 371	1. 398	1. 394		1. 392	
後	間	隙	比	e_{c}		1. 002	0. 963	0. 968		0.972	

特記事項

$$H_{\rm s} = \frac{m_{\rm s}}{A \rho_{\rm s}}, \ e = \frac{H}{H_{\rm s}} - 1, \ S_{\rm r0} = \frac{w_0 \rho_{\rm s}}{e_0 \rho_{\rm w}}$$


調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 17日

試料番号(深さ) 斜面上部A

試 験 者 松川 尚史

土 質 名 称	(GS-Cs)	最大粒径 mm		供試体直径 mm	60.0
垂直力荷重計の位置	反力板側	せん断変位速度 mm/min	0.2	すき間の大きさ mm	0.3
供 試 体 No.	1	2	3	4	
压密応力σ。 kN/m²	25	45	65	85	
せ 定圧 せん断強さ τ _f kN/m²	45. 9	83. 1	95. 5	90. 6	
が 断 せん断変位 δ _f mm	5.84	7.00	7.00	6. 25	
最重 応 力 σ _f kN/m²	_	_	_	_	
大 一 一 垂 直 変 位 Δ H _f mm	0. 189	0. 557	0.505	0. 575	
垂直変位最大変動幅 ¹⁾ mm	_	_	_	_	
垂直応力最大変動率2) %	-2.8	-0.9	-0.6	-0.4	

特記事項

- 1) 定体積試験のときのみ記入する。
- 2) 定圧試験のときのみ記入する。

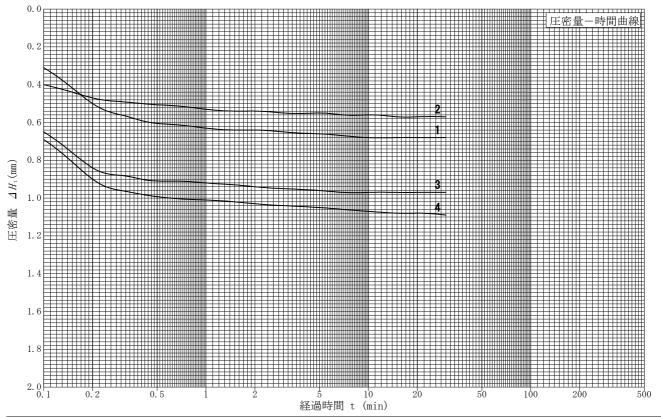
JGS 0561 土の強度特性 土の圧密定圧(CD)ー面せん断試験

調查件名 豊川用水施設支線水路土質調查業務 試験年月日 2025年 2月 17日 試料番号(深さ) 斜面上部A 松川 尚史 強度定数 力 $c_{\rm d}$ kN/m² 応力 範囲 $\tan\phi_{\mathrm{d}}$ c' kN/m² 規圧 160

特記事項

 $[1kN/m^2 = 0.0102kgf/cm^2]$

垂直応力 σ (kN/m^2)


調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 21日

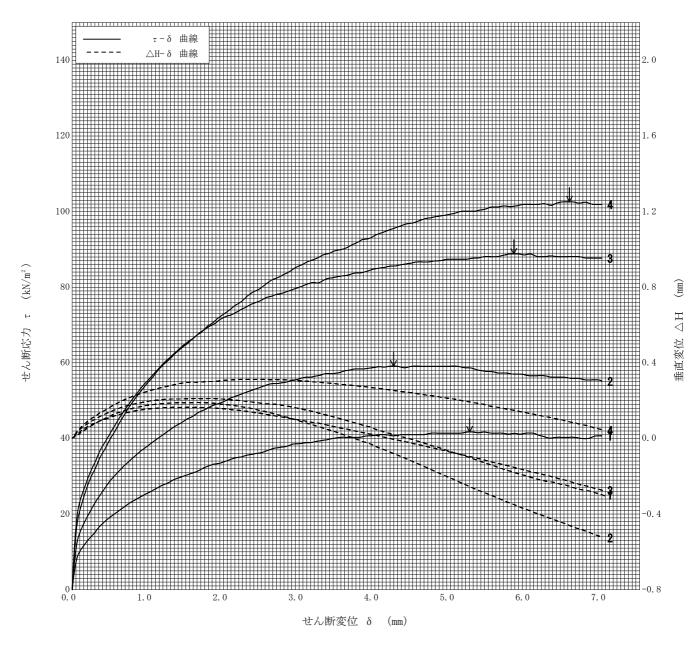
試料番号(深さ) 斜面中部A

者 松川 尚史

試	土 質	名	称		(SCsG)	土粒子の密度 $ ho_s$ Mg/m³	2. 748	試	垂直力の加圧形式	電動モータージャッキ式
	最大	粒	径	mm		液性限界 w . % ¹⁾		験	垂直力荷重計の位置	反力板側
料	状		態		乱さない	塑性限界 w, % 1)		機の	垂直力載荷装置の位置	下面
供試体	直	径	D	mm	60.0	断面積A mm²	28.27×10^{2}	形	可 動 箱	上箱
体	作製	方	法		カッターリング	去		式	すき間の設定方法	すき間設定ねじ
供	試体	: N	0.		1	2	3		4	
圧	密 応	力	σ _c]	kN/m^2	25	45	65		85	
	高	さ	H_0	mm	20.00	20.00	20.00		20.00	
初	湿潤質	重量	m 0	g	101. 90	102. 88	101. 75		102. 54	
	炉乾燥	質量	m _s	g	78. 01	80. 26	80. 21		79. 24	
期	含 水	比	w_0	%	30.6	28. 2	26. 9		29. 4	
	実質	うさ	$H_{\rm s}$	mm	10.04	10. 33	10. 32		10. 20	
状	湿潤	密度	$ ho_{ m t0}$	Mg/m^3	1.802	1.819	1. 799		1.813	
	乾燥	密度	$ ho_{ m d0}$	${\rm Mg/m^3}$	1. 379	1. 419	1. 418		1. 401	
態	間隙	比	$e_{\scriptscriptstyle 0}$		0. 992	0. 936	0. 938		0. 961	
	飽 和	度	${\cal S}_{{ m r}0}$	%	84.8	82. 8	78.8		84. 1	
圧	圧密	寺間	$t_{ m c}$	min	30	30	30		30	
	最終圧	密量	ΔH	c mm	0. 68	0. 57	0. 97		1. 09	
密	高	さ	$H_{\rm c}$	mm	19. 32	19. 43	19. 03		18. 91	
,,,	乾燥	密度	$ ho_{ m dc}$	Mg/m³	1. 428	1. 461	1. 490		1. 482	
後	間隙	比	e_{c}		0. 924	0. 881	0.844		0.854	

特記事項

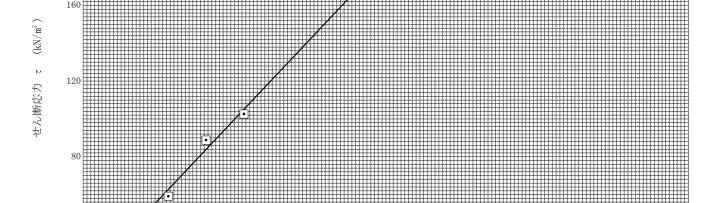
$$H_{\rm s} = \frac{m_{\rm s}}{A \rho_{\rm s}}, \ e = \frac{H}{H_{\rm s}} - 1, \ S_{\rm r0} = \frac{w_{\rm 0} \rho_{\rm s}}{e_{\rm 0} \rho_{\rm w}}$$


調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 21日

試料番号(深さ) 斜面中部A

試 験 者 松川 尚史


土質名称	(SCsG)	最大粒径 mm		供試体直径 mm	60.0
垂直力荷重計の位置	反力板側	せん断変位速度 mm/min	0.2	すき間の大きさ mm	0.3
供 試 体 No.	1	2	3	4	
圧 密 応 力 σ。 kN/m²	25	45	65	85	
せ 定圧 せん断強さ τ _f kN/m²	41.7	59. 1	88.8	102.6	
断 せん断変位 δ _f mm	5. 25	4. 25	5.84	6. 57	
最 垂 直 応 力 σ _f kN/m ²	_	_	-	_	
大 毎 直 変 位 ΔH _f mm	-0. 101	-0.080	-0. 153	0.088	
垂直変位最大変動幅 1) mm	_	_	_	_	
垂直応力最大変動率 2) %	-2.8	-0.9	-1. 1	-0.4	

特記事項

- 1) 定体積試験のときのみ記入する。
- 2) 定圧試験のときのみ記入する。

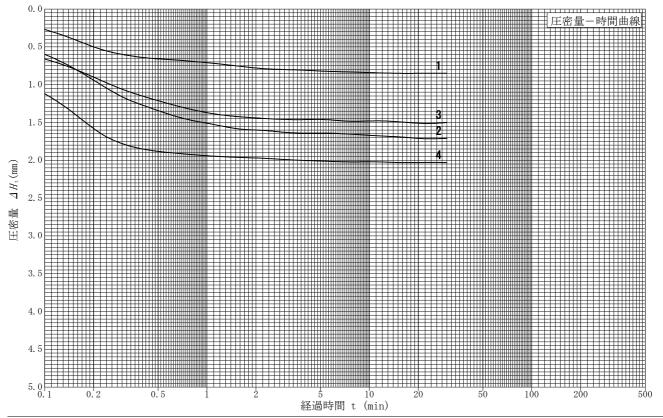
土の強度特性 土の圧密定圧(CD) 一面せん断試験 JGS 0 5 6 1 調查件名 豊川用水施設支線水路土質調查業務 試験年月日 2025年 2月 21日 試料番号(深さ) 斜面中部A 松川 尚史 強度定数 力 $c_{\rm d}$ kN/m² 応力 範囲 $\tan\phi_{\rm d}$ c' kN/m² 規圧 0.85 0.80

特記事項

 $[1kN/m^2 = 0.0102kgf/cm^2]$

垂直応力 σ (kN/m^2)

土の圧密定圧(CD) 一面せん断試験(初期状態, 圧密過程)


調査件名 豊川用水施設支線水路土質調査業務

試験年月日 2025年 2月 27日

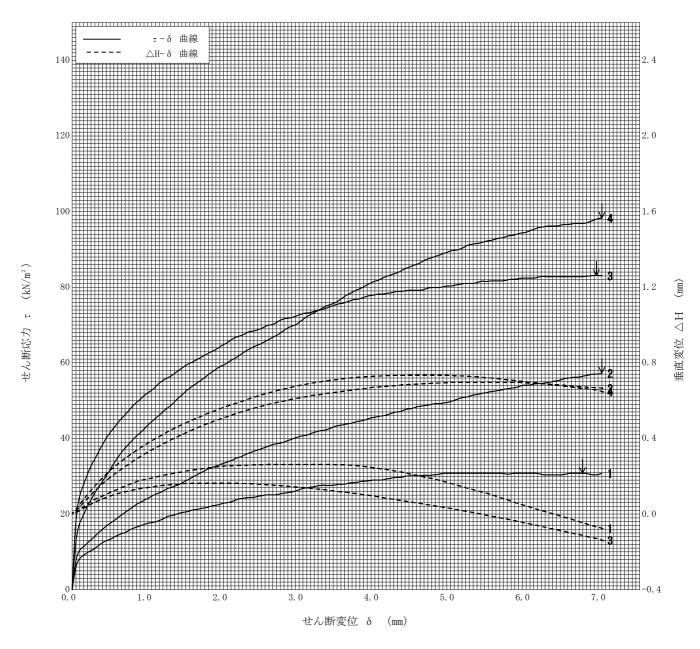
試料番号(深さ) 斜面中部B

者 松川 尚史

大 整 名 称											
# 状 態 乱さない 塑性限界 wo % で	試	土質	名	称		(SCsG)	土粒子の密度 $ ho_s$ Mg/m³	2. 739	試	垂直力の加圧形式	電動モータージャッキ式
供 直 径 D mm 60.0 断 面 積 A mm² 28.27×10² 形 可 動 箱 上箱		最 大	: 粒	径	mm		液性限界 w l %1)			垂直力荷重計の位置	反力板側
供 試 体 No. 1 2 3 4 E 密 応 力 σ _e kN/m² 25 45 65 85 高 さ H ₀ mm 20.00 20.00 20.00 20.00 湿潤質量 m ₀ g 70.23 63.13 72.49 69.12 炉乾燥質量 m ₈ g 62.24 55.21 63.53 61.06 期 含 水 比 ψ ₀ % 12.8 14.3 14.1 13.2 実質高さ H _e mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρ ₁₀ Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ ₄₀ Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 e ₀ 1.488 1.805 1.439 1.538 飽 和 度 S ₁₀ % 23.6 21.7 26.8 23.5 E 圧密時間 t _e min 30 30 30 30 毫終圧密量 ΔH _e mm 0.85 1.71 1.50 2.03 密 高 さ H _e mm 19.15 18.29 18.50 17.97	料	状		態		乱さない	塑性限界 w _P % ¹⁾			垂直力載荷装置の位置	下面
供 試 体 No. 1 2 3 4 E 密 応 力 σ _e kN/m² 25 45 65 85 高 さ H ₀ mm 20.00 20.00 20.00 20.00 湿潤質量 m ₀ g 70.23 63.13 72.49 69.12 炉乾燥質量 m ₈ g 62.24 55.21 63.53 61.06 期 含 水 比 ψ ₀ % 12.8 14.3 14.1 13.2 実質高さ H _e mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρ ₁₀ Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ ₄₀ Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 e ₀ 1.488 1.805 1.439 1.538 飽 和 度 S ₁₀ % 23.6 21.7 26.8 23.5 E 圧密時間 t _e min 30 30 30 30 毫終圧密量 ΔH _e mm 0.85 1.71 1.50 2.03 密 高 さ H _e mm 19.15 18.29 18.50 17.97	供	直	径	D	mm	60.0	断 面 積 A mm ²	28.27×10^{2}	l ' ''.	可 動 箱	上箱
E 密 応 力 σ。 kN/m² 25 45 65 85 高 さ H₀ mm 20.00 20.00 20.00 20.00 湿潤質量 m₀ g 70.23 63.13 72.49 69.12 炉乾燥質量 mѕ g 62.24 55.21 63.53 61.06 期 含 水 比 ψ₀ % 12.8 14.3 14.1 13.2 実質高さ Hѕ mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρ₁₀ Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ₀₀ Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 e₀ 1.488 1.805 1.439 1.538 飽 和 度 S₂₀ % 23.6 21.7 26.8 23.5 正 医時間 tҫ min 30 30 30 30 最終圧密量 ΔHℴ mm 0.85 1.71 1.50 2.03 密 高 さ Hℴ mm 19.15 18.29 18.50 17.97	体	作製	上方	法		カッターリング	· 去		式	すき間の設定方法	すき間設定ねじ
高 さ H ₀ mm 20.00 20.00 20.00 20.00 20.00 初 湿潤質量 m ₀ g 70.23 63.13 72.49 69.12 炉乾燥質量 m _s g 62.24 55.21 63.53 61.06 期 含 水 比 w ₀ % 12.8 14.3 14.1 13.2 実質高さ H _s mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρ ₁₀ Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ ₄₀ Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 e ₀ 1.488 1.805 1.439 1.538 飽 和 度 S ₁₀ % 23.6 21.7 26.8 23.5 圧 圧密時間 t _c min 30 30 30 30 30 最終圧密量 ΔH _c mm 0.85 1.71 1.50 2.03 密 高 さ H _c mm 19.15 18.29 18.50 17.97	供	試(\$ N	o.		1	2	3		4	
初 湿潤質量 mo g 70.23 63.13 72.49 69.12 炉乾燥質量 ms g 62.24 55.21 63.53 61.06 期 含 水 比 wo % 12.8 14.3 14.1 13.2 実質高さ Hs mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρto Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρto Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 eo 1.488 1.805 1.439 1.538 飽 和 度 Sto % 23.6 21.7 26.8 23.5 圧 圧密時間 te min 30 30 30 30 30 最終圧密量 ΔHe mm 0.85 1.71 1.50 2.03 密 高 さ He mm 19.15 18.29 18.50 17.97	圧	密 応	力	σ _с	kN/m^2	25	45	65		85	
振倜頁重 m。 g		高	さ	H_0	mm	20.00	20.00	20.00		20.00	
期 含 水 比 w_0 % 12.8 14.3 14.1 13.2 実質高さ H_s mm 8.04 7.13 8.20 7.88 状 湿潤密度 ρ_{t0} Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ_{t0} Mg/m³ 1.101 0.976 1.123 1.080 態 間 隙 比 e_0 1.488 1.805 1.439 1.538 飽 和 度 S_{r0} % 23.6 21.7 26.8 23.5 圧 圧密時間 t_c min 30 30 30 30 t_c 最終圧密量 ΔH_c mm 0.85 1.71 1.50 2.03 密 高 さ H_c mm 19.15 18.29 18.50 17.97	初	湿潤	質 量	m_0	g	70. 23	63. 13	72. 49		69. 12	
実質高さ H _s mm 8.04 7.13 8.20 7.88 湿潤密度 ρ _{to} Mg/m³ 1.242 1.116 1.282 1.222 乾燥密度 ρ _{do} Mg/m³ 1.101 0.976 1.123 1.080 間隙比 e _o 1.488 1.805 1.439 1.538 飽和度 S _{ro} % 23.6 21.7 26.8 23.5 正 密 時間 t _e min 30 30 30 30 最終圧密量 ΔH _e mm 0.85 1.71 1.50 2.03 密 高 さ H _e mm 19.15 18.29 18.50 17.97		炉乾燥	質量	<i>m</i> s	g	62. 24	55. 21	63. 53		61.06	
状 湿 潤 密 度 ρ_{v0} Mg/m³ 1. 242 1. 116 1. 282 1. 222 乾燥密度 ρ_{d0} Mg/m³ 1. 101 0. 976 1. 123 1. 080 間隙 比 e_0 1. 488 1. 805 1. 439 1. 538 飽和度 S_{r0} % 23. 6 21. 7 26. 8 23. 5 圧 密 時間 t_c min 30 30 30 30 30 t_c 最終圧密量 ΔH_c mm 0. 85 1. 71 1. 50 2. 03 密 高 さ H_c mm 19. 15 18. 29 18. 50 17. 97	期	含水	比比	w_0	%	12.8	14. 3	14. 1		13. 2	
乾燥密度 ρ_{40} Mg/m³ 1.101 0.976 1.123 1.080 間隙 比 e_0 1.488 1.805 1.439 1.538 飽和度 S_{r0} % 23.6 21.7 26.8 23.5 圧 密時間 t_c min 30 30 30 30 30 最終圧密量 ΔH_c mm 0.85 1.71 1.50 2.03 密高 さ H_c mm 19.15 18.29 18.50 17.97		実 質	高さ	$H_{\rm s}$	mm	8. 04	7. 13	8. 20		7.88	
態 間 隙 比 e_0 1.488 1.805 1.439 1.538 飽 和 度 S_{r0} % 23.6 21.7 26.8 23.5 圧 密 時間 t_c min 30 30 30 30 30 30 最終圧密量 ΔH_c mm 0.85 1.71 1.50 2.03 密 高 さ H_c mm 19.15 18.29 18.50 17.97	状	湿潤	密度	$ ho_{ ext{t0}}$	${\rm Mg/m^3}$	1. 242	1. 116	1. 282		1. 222	
飽和度 S_{r0} % 23.6 21.7 26.8 23.5 圧密時間 t_c min 30 30 30 30 30 30 最終圧密量 ΔH_c mm 0.85 1.71 1.50 2.03 密高さ H_c mm 19.15 18.29 18.50 17.97		乾燥	密度	$ ho_{ m d0}$	${\rm Mg/m^3}$	1. 101	0. 976	1. 123		1.080	
E E 密 時 間 t_c min 30 30 30 30 30 t_c 最終 E 密 時 間 t_c mm 0.85 1.71 1.50 2.03 t_c 高 さ t_c mm 19.15 18.29 18.50 17.97	態	間隙	比比	e_0		1. 488	1.805	1. 439		1.538	
最終圧密量 ΔH。mm 0.85 1.71 1.50 2.03 密 高 さ H。mm 19.15 18.29 18.50 17.97		飽和	度	$S_{\rm r0}$	%	23.6	21. 7	26.8		23. 5	
密 高 さ H。 mm 19.15 18.29 18.50 17.97	圧	圧密	寺 間	$t_{ ext{c}}$	min	30	30	30		30	
10.20		最終圧	密量	ΔE	H _c mm	0.85	1.71	1. 50		2.03	
乾燥密度 ρ _{dc} Mg/m³ 1.150 1.068 1.214 1.201	密	高	さ	H_{c}	mm	19. 15	18. 29	18. 50		17. 97	
	***	乾燥	密 度	$ ho_{ m dc}$	${\rm Mg/m^3}$	1. 150	1. 068	1. 214		1. 201	
後間隙比e。 1.382 1.565 1.256 1.280	後	間隙	比比	$e_{ ext{c}}$		1. 382	1. 565	1. 256		1. 280	

特記事項

$$H_{\rm s} = \frac{m_{\rm s}}{A \rho_{\rm s}}, \ e = \frac{H}{H_{\rm s}} - 1, \ S_{\rm r0} = \frac{w_{\rm 0} \rho_{\rm s}}{e_{\rm 0} \rho_{\rm w}}$$


調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 27日

試料番号(深さ) 斜面中部B

試 験 者 松川 尚史

土質名称	(SCsG)	最大粒径 mm		供試体直径 mm	60.0
垂直力荷重計の位置	反力板側	せん断変位速度 mm/min	0.2	すき間の大きさ mm	0.3
供 試 体 No.	1	2	3	4	
圧 密 応 力 σ。 kN/m²	25	45	65	85	
せ 定圧 せん断強さ τ _f kN/m²	30.8	57. 3	83. 1	98. 3	
が 断 せん断変位 δ _f mm	6. 74	7.00	6. 93	7.00	
最 垂 直 応 力 σ _f kN/m ²	_	_	-	_	
大 垂 直 変 位 ΔH _f mm	-0.046	0.666	-0. 129	0.649	
垂直変位最大変動幅 ¹⁾ mm	_	_	-	_	
垂直応力最大変動率 2) %	-1.2	-0.9	-1. 1	-0.8	

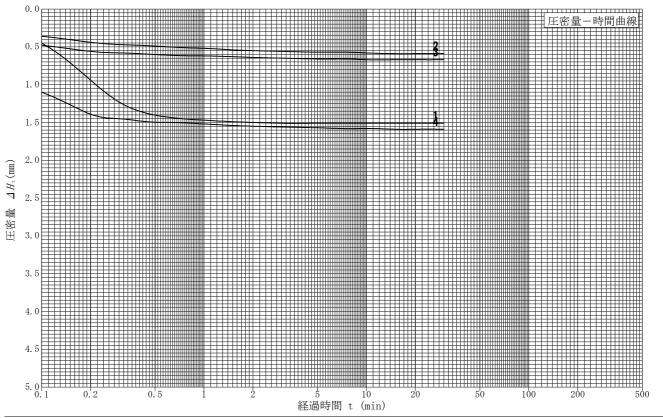
特記事項

- 1) 定体積試験のときのみ記入する。
- 2) 定圧試験のときのみ記入する。

JGS 0561 土の強度特性 土の圧密定圧(CD)ー面せん断試験

調查件名 豊川用水施設支線水路土質調查業務 試験年月日 2025年 2月 27日 試料番号(深さ) 斜面中部B 松川 尚史 力 強度定数 $c_{\rm d}$ kN/m² 応力 範囲 $\tan\phi_{\rm d}$ c' kN/m² 規 圧 160 垂直応力 σ (kN/m^2)

特記事項


調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 25日

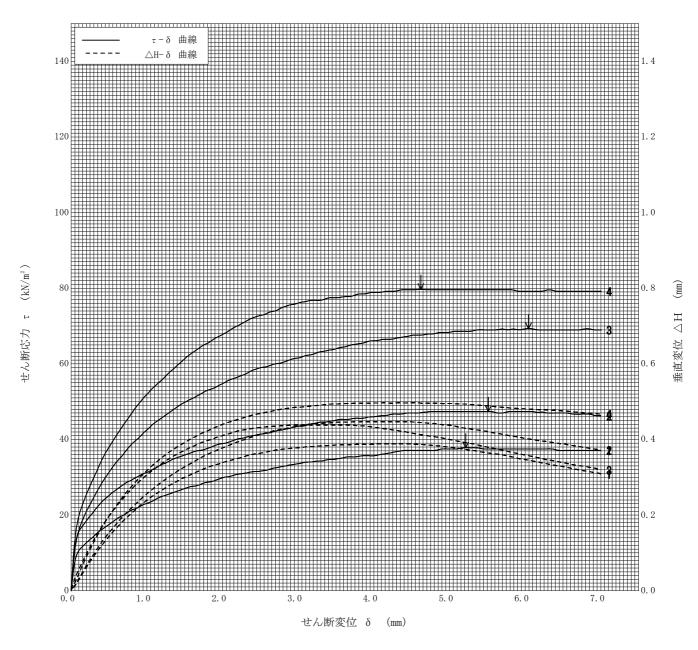
試料番号(深さ) 斜面下部A

試 験 者 松川 尚史

試	土質を	称		(SCs-G)	土粒子の密度 $ ho_s$ Mg/m³	2. 743	試	垂直力の加圧形式	電動モータージャッキ式
	最 大 粒	1 径	mm		液性限界 w l %1)		験	垂直力荷重計の位置	反力板側
料	状	態		乱さない	塑性限界 w _P % ¹⁾		機の	垂直力載荷装置の位置	下面
供試体	直	E D	mm	60.0	断 面 積 A mm ²	28. 27×10^{2}	形	可 動 箱	上箱
体	作製力	ī 法		カッターリング法			式	すき間の設定方法	すき間設定ねじ
供	試 体	No.		1	2	3		4	
圧	密応力	$\sigma_{\rm c}$	kN/m^2	25	45	65		85	
初	高 さ	H_0	mm	20.00	20.00	20.00		20.00	
	湿潤質量	m_0	g	95. 55	93. 48	94. 87		98. 23	
期	炉乾燥質量	t m	g	69. 29	71.89	72. 64		73. 22	
	含 水 均	$\leq w_0$	%	37. 9	30. 0	30.6		34. 2	
	実質高さ	. Н _s	mm	8. 94	9. 27	9. 37		9. 44	
状	湿潤密度	ξρt	Mg/m^3	1. 690	1. 653	1. 678		1. 737	
	乾燥密度	ξ ρ _d	Mg/m^3	1. 225	1. 271	1. 285		1. 295	
態	間隙均	$\leq e_0$		1. 237	1. 157	1. 134		1. 119	
	飽和度	\mathcal{E} S_{r0}	%	84. 0	71. 1	74. 0		83. 8	
圧	圧密時間	$t_{ m c}$	min	30	30	30		30	
	最終圧密量	Ł Δ,	H _c mm	1. 51	0. 59	0.67		1. 59	
密	高さ	. Н _с	mm	18. 49	19. 41	19. 33		18. 41	
İ	乾燥密度	ξ ρ _d	Mg/m^3	1. 326	1. 310	1. 330		1. 407	
後	間隙均	 ≤ e _c		1. 068	1. 094	1.063		0. 950	

特記事項

$$H_{\rm s} = \frac{m_{\rm s}}{A \rho_{\rm s}}, \ e = \frac{H}{H_{\rm s}} - 1, \ S_{\rm r0} = \frac{w_{\rm 0} \rho_{\rm s}}{e_{\rm 0} \rho_{\rm w}}$$


調查件名 豊川用水施設支線水路土質調查業務

試験年月日 2025年 2月 25日

試料番号(深さ) 斜面下部A

試 験 者 松川 尚史

土 質 名 称	(SCs-G)	最大粒径 mm		供試体直径 mm	60.0
垂直力荷重計の位置	反力板側	せん断変位速度 mm/min	0. 2	すき間の大きさ mm	0.3
供 試 体 No.	1	2	3	4	
圧 密 応 力 σ。 kN/m²	25	45	65	85	
せ 定圧 せん断強さ τ _f kN/m²	37.8	47. 4	69. 3	79. 7	
断 せん断変位 δ _f mm	5. 21	5. 51	6.05	4.62	
最 重 直 応 力 σ _f kN/m²	_	_	_	_	
大 垂 直 変 位 ΔH _f mm	0.374	0. 420	0.357	0. 496	
垂直変位最大変動幅 ¹⁾ mm	_	_	_	_	
垂直応力最大変動率20 %	-1.2	-0.9	-0.6	-0.8	

特記事項

¹⁾ 定体積試験のときのみ記入する。

²⁾ 定圧試験のときのみ記入する。

JGS 0561 土の強度特性 土の圧密定圧(CD)ー面せん断試験

調查件名 豊川用水施設支線水路土質調查業務 試験年月日 2025年 2月 25日 試料番号(深さ) 斜面下部A 松川 尚史 強度定数 力 $c_{\rm d}$ kN/m² 応力 範囲 $\tan\phi_{\mathrm{d}}$ c' kN/m² 規圧 > 圧密後

特記事項

 $[1kN/m^2 = 0.0102kgf/cm^2]$

垂直応力 σ (kN/m^2)