カイガラアマノリ葉状体の冷凍および乾燥耐性について

阿知波 英明

Resistance to refrigeration and desiccation of Porphyra tenuipedalis thallus

ACHIHA Hideaki

カイガラアマノリ Porphyra tenuipedalis Miura は糸状体が殻胞子のうちおよび殻胞子を形成せずに直接葉状体に成長し、単胞子の放出も観察されていないでアマノリ類の中で特殊な生態を持ち、葉状体は明るい紅色で色彩的にも他のアマノリ類と異なっている。また、本種は東京湾や伊勢湾、大阪湾、関府内海において生育が確認されており、三河湾の蒲郡湾地先でもみつかっている（後、私信）。

愛知水試では育種材料として各種アマノリ類等を収集試験しているが、カイガラアマノリの葉状体は、酸礆に用いられるすずしぼりやアササノリ、また天然のマラパアマノリ、オニアマノリ、ウシケノリ属のウシケノリと異なり、乾燥や冷凍に弱いことが示されたので報告する。

乾燥耐性試験

カイガラアマノリの無機質（フリーリビング）糸状体をホタル貝殻に植入付し、栄養塩類を添加した海水で、17－18℃、白色蛍光灯照明 1000 lux 以下、11 hL：13 hD で約 1 ヶ月間静置培養した。その後、2000 lux、13 hL：11 hD に移行し、貝殻から直接発芽した数 mm の葉状体を貝殻からはぎ取り、通気培養で葉長 5－8 cm に成長させた葉状体を乾燥試験に用いた。葉状体を手紙に乗せ充分水分を取り除き試験開始時の湿重量とした。また、ノリ葉状体の生死の判定は、耐性試験終了後数日間通気培

Fig. 1. Resistance to refrigeration of Porphyra tenuipedalis thallus

(A) Before refrigeration. (B) After refrigeration for 6 days at −75℃. (C) After refrigeration for 6 days at −75℃ and 3 days of culture in the aerated liquid medium. Arrows indicate survival portions. Scale bars=5cm
養した後観察し、細胞内容物が抜けて化白したものを見たことが
死んで部とされた（Fig. 1）。
試験は 17～18℃の温室内で、葉状体を 15, 30, 45 および
60分と、60, 120, 180および240分に分隔乾燥させる
2回もされた。結果を Table 1 に示す。1 回目の試験
では 60分後の葉状体重量は試験開始時の 28%となり、
20～40%の細胞が生存した。しかし、2 回目の試験では、
葉状体の重量が試験開始時の 21%になった 120 分以降
生存細胞は認められなかった。
養殖ナリは乾燥に強く、乾燥させることで乾燥性を高
める。水生物（たとえば塩藻や緑藻類）を除く方法が用い
られている。4) しかし、本種は養殖アマノリ類のような
乾燥耐性は持たないことが示された。
Table 1. Resistance to desiccation of P. temmipedalis thal-
hus at 17-18℃ with an air blast.
<table>
<thead>
<tr>
<th>Percentage of air blast (Minutes of ventilation)</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desiccated weight (%)</td>
<td>70</td>
<td>49</td>
<td>38</td>
<td>28</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
</tr>
<tr>
<td>Survival portion (%)</td>
<td>95</td>
<td>90-95</td>
<td>80-70</td>
<td>40-70</td>
<td>80-70</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* Dry weight per wet weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

冷凍耐性試験

冷凍試験には葉状体からブロットブラストを単離し再生
した葉長 5～8 cm の葉状体を用いた。沿水で水分を充分
取り除き、新しい紙にくるみ直ちに-30℃および-
75℃で冷凍した。冷凍時間は、4, 24, 48, 72, 144 およ
び 288 時間とし、-75℃ではさらに 2 時間の冷凍試験も
おこなった。結果を Table 2 に示す。-30℃での冷凍では
4 時間および 24 時間の冷凍で半分以上の細胞が死亡し、
生存細胞は 48 時間で 5 %、72 時間以上では 1%以下と
になった。しかし、288 時間の冷凍でも葉状体によりやすか
でないが短時間および中央部で生存細胞がみられた。一方、-
75℃での冷凍では、2 時間で細胞のほとんどが死亡
したが、288 時間の冷凍でも-30℃と同じくかえって生存
細胞がみられた。

養殖ナリは低温に強く、幼芽または成葉の付着した網を
-15～-20℃前後で保存し、海藻に応じててき養殖
を開始したり、病害対策や着生礁藻・緑藻類除去等に用
いている。5,6) しかし、今回の試験結果から本種は、養殖
アマノリ類やウサケノリと比べ冷凍耐性が著しく劣ると
判断できた。ただし、ごく一部の細胞は 288 時間の冷凍
でも生存し、また幼芽は成葉よりもさらに冷凍に耐え（未
発表）ので、葉状体の葉持や大きさ、冷凍するまでの処
理によってはさらに強い耐性を示す可能性は否定できな
い。

ところで、本種は1956～57年にかけて東京湾および伊
勢湾で養殖されていることが報告されたが、その後本
種が单胞子を形成しないなどの特性から養殖に混入し
たものと判断されている。7 今回の試験から、カイガラ
アマノリは冷凍や乾燥に弱いことが示され、冷凍や乾燥
技術を用いる養殖方法においては、養殖に不適な種であ
ることがわかった。しかし、本種はこれら特殊な性質と
高いあかさを病害性（未発表）のため、育種材料とし
て有用であると考えられた。

また、カイガラアマノリは乾燥しない亜潮間帯の貝柱
上にだけ生育する特殊な生態を持つ8,9) が、このことが
冷凍や乾燥に弱い特殊な性質を持つ理由の 1 つと考えら
れ、同じ亜潮間帯に生育し養殖の報告8) のないウスタッ
ノリ10) やカヤケノリ11) 等も冷凍や乾燥に弱い可能性が
あると考えられた。

本試験に対して、カイガラアマノリの無基質系状体を
分与していただいた佐賀県有明水産振興センターの川村
嘉信特別研究員に厚くお礼申し上げます。

引用水文献

1) Notoya, M., Kikuchi, N., Matsuo, M., Aruga, Y. and
(Rhodophyta) from Japan. Nippon Suisan Gakkaishi, 59, 431-436.
2) 稲谷真生・菊地則雄・有賀孝浩・三浦昭雄（1991）赤藻カ
イガラアマノリの室内培養。平成3年度日本水産学会春季大
会講演要旨集、166。
3) 稲谷真生・菊地則雄（1993）カイガラアマノリ。藻類の生
活史集成第2巻、編著編集、内田昭室監、東京、214-215。
4) 黒木宗尚・岩崎英雄（1976）ノリの生物学的研究。改訂版版
海藻図鑑、今井秀夫監修、岩崎英・黒木宗尚・藤元光作・山本
謙太郎編、恒星社厚生閣、東京、1-49。
5) 大山和好・吉田博之（1976）ノリ養殖の技術。改訂版版海
藻圖鑑、今井秀夫監修、岩崎英・黒木宗尚・藤元光作・山本
謙太郎編、恒星社厚生閣、東京、50-84。