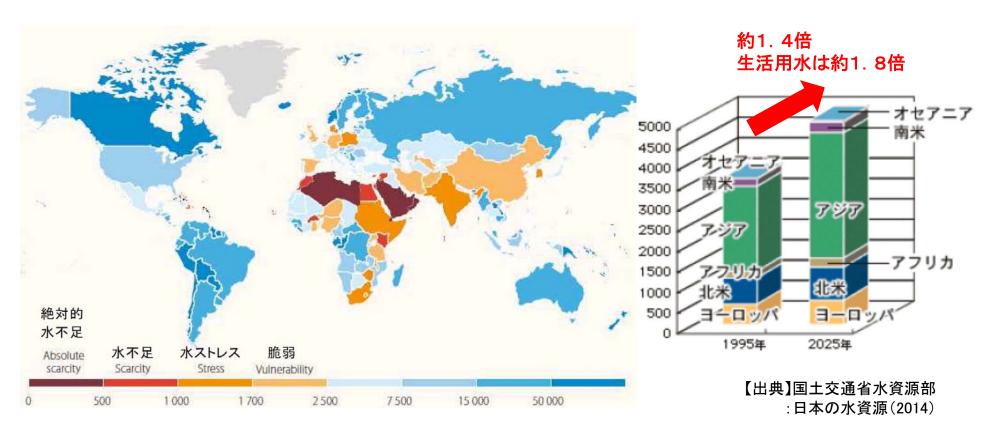
「清流長良川流域の生き物・生活・産業」連続講座 愛知県の新たな水需要のプラン

水まわり住宅設備の節水化と水使用量変化

2017. 5. 28 福岡女子大学 環境科学科 豊貞 佳奈子 目次

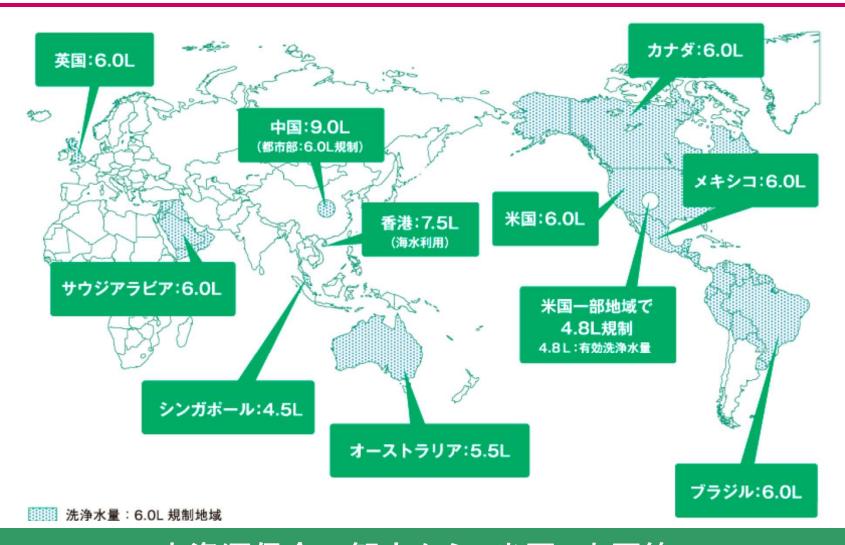
1. 日本の水資源・水使用量


2. 水まわり設備の節水化

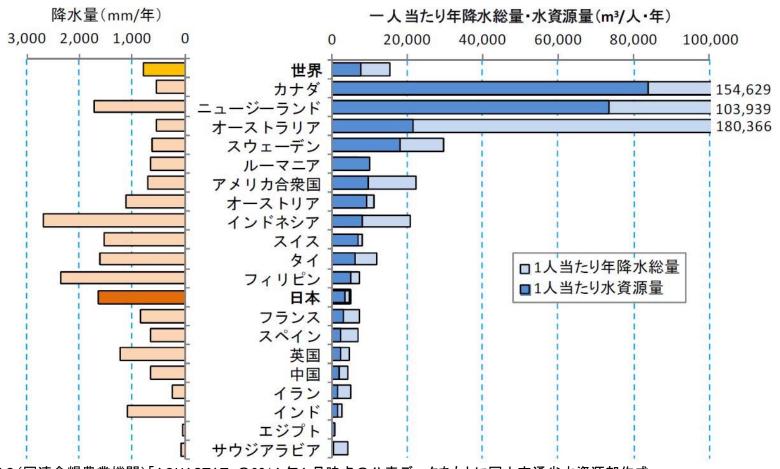
3. 水まわりからCO2削減

深刻化する世界の水問題

一人当たりの利用可能水資源量(m³/年、2011)


世界の水需要量の将来見通し

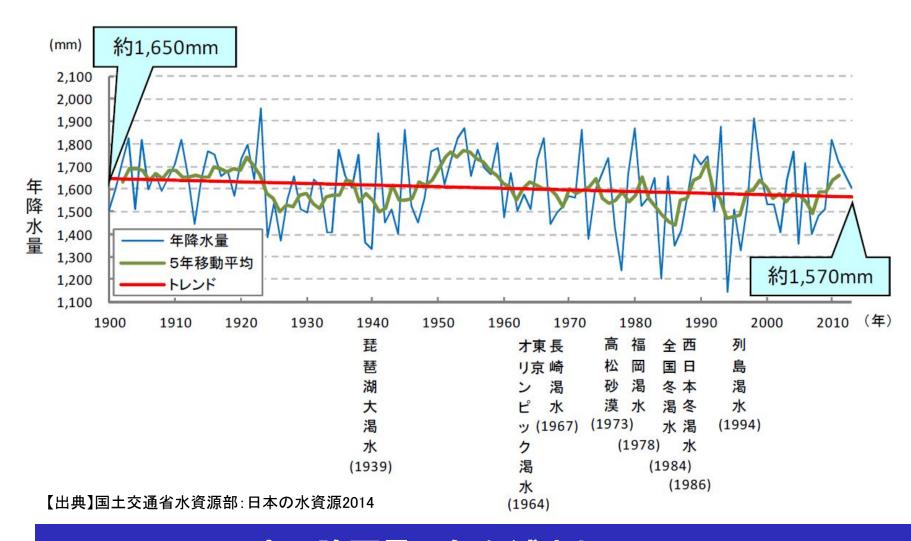
【出典】「世界水発展報告書2014(The United Nations World Water Development Report 2014)」(世界水アセスメント計画(WWAP),2014)


人口急増と社会発展(安全な飲料水、トイレなどの普及) で多くの国が水不足に。

世界の大便器洗浄水量規制

水資源保全の観点から、米国、中国等で 大便器洗浄水量が規制されている。

世界各国の降水量・水資源量



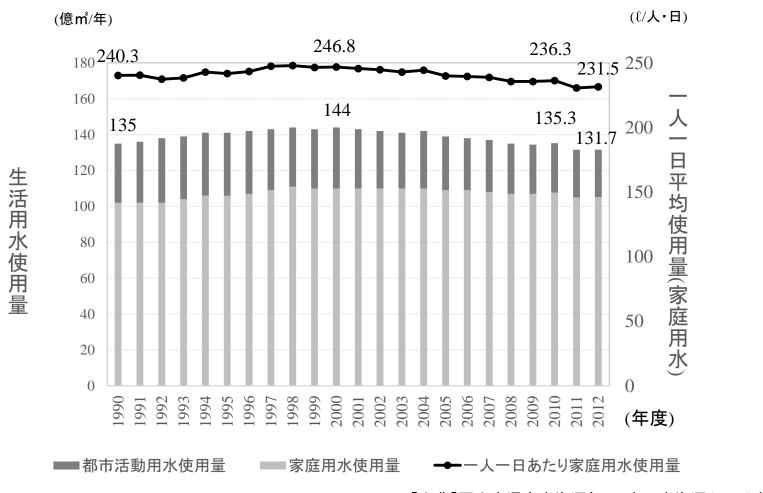
(注) 1.FAO(国連食糧農業機関)「AQUASTAT」の2014 年4 月時点の公表データをもとに国土交通省水資源部作成 2.「世界」の値は「AQUASTAT」に「水資源量[Total renewable water resources(actual)]」が掲載されている177 カ国による。

【出典】国土交通省水資源部:日本の水資源2014

日本の年平均降水量:世界平均の約2倍 日本の一人あたり水資源量:世界平均の2分の1以下

日本の年降水量の経年変化

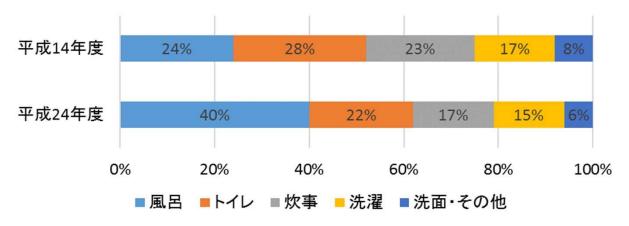
日本の降雨量は年々減少している。 大雨と小雨の年間降水量の開きも次第に大きくなっている。

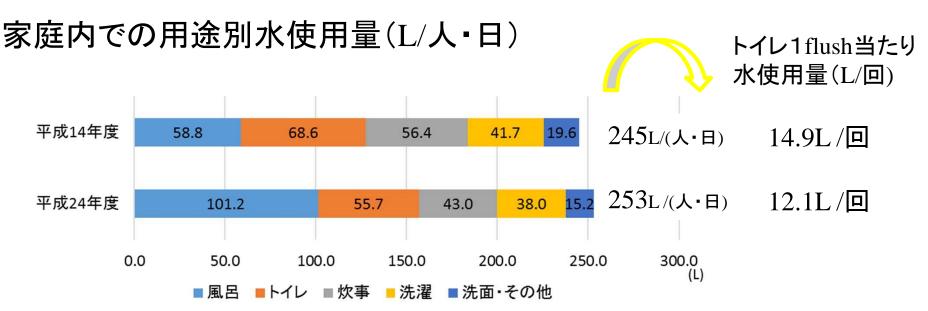

日本の水使用量の内訳

【出典】国土交通省水資源部:日本の水資源(2015)

生活用水は全体の約2割、上水使用(都市用水)の約6割。 ⇒生活用水の削減が重要。

日本の生活用水使用量の経年変化




【出典】国土交通省水資源部:日本の水資源(2015)を元に作成

家庭用水使用量(最新値)は231.5L/(人・日)

東京都の家庭用水

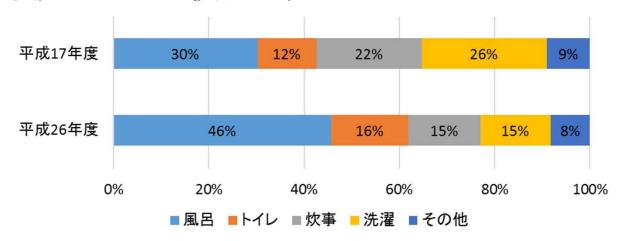
家庭内での水使用内訳

【出典】東京都水道局 平成14年度/平成24年度 一般家庭水使用目的別実態調査

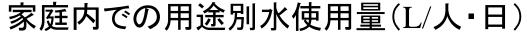
福岡市の家庭用水

平成17年度

平成26年度


0.0

家庭内での水使用内訳


60.8

91.3

50.0

節水機器設置 推奨自治体の 水使用量が 少ない。

25.0

44.3

32.5

■風呂 ■トイレ ■炊事 ■洗濯 ■その他

100.0

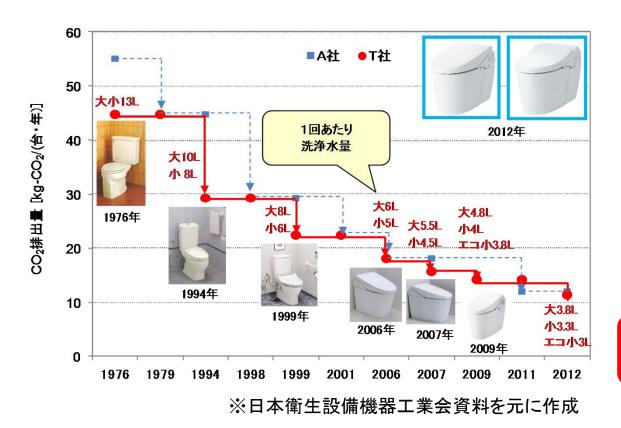
【出典】福岡市水道局 平成19年度版/平成28年度版水とわたしたち

150.0

52.8

30.3

29.5


目次

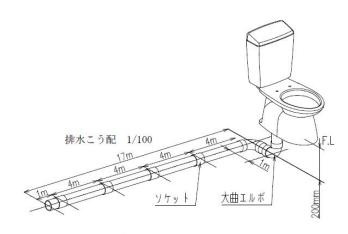
1. 日本の水資源・水使用量

2. 水まわり設備の節水化

3. 水まわりからCO2削減

大便器の節水化

JIS A 5207衛生器具 一便器·洗面器類

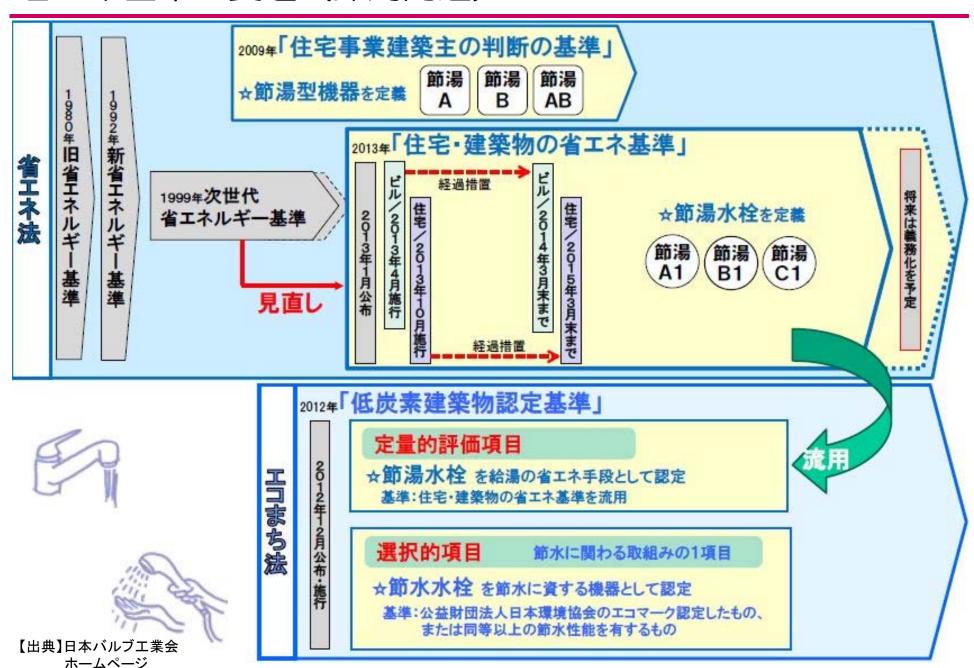

2011年1月改訂 「節水Ⅱ型」追加(大便器)

区分	タンク 式	洗浄弁 式		
節水	8.5L	8.5L		
I 型	以下	以下		
節水	6.5L	6.5L		
Ⅱ 型	以下	以下		

近年、水資源保全・地球温暖化防止の観点から、 衛生器具の節水化が進んでいる。

大便器の搬送性能試験

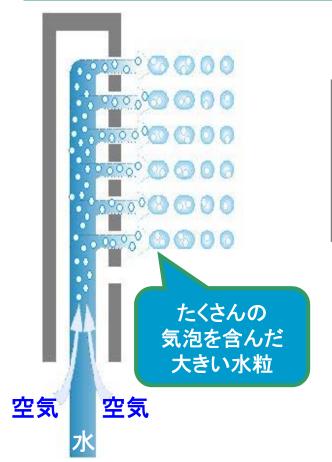
搬送性能	基準名称	発行元
搬送メディアの平均	優良住宅部品評価基準 便器 BLEWC:2010	財団法人
搬送距離:10m以上	優良住宅部品試験書 BLT WC-11	ベターリビング

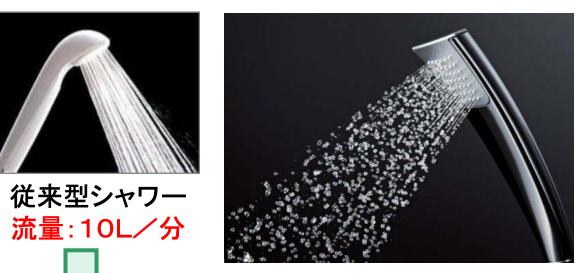

搬送性能試験装置

搬送メディアの置き方

便器の洗浄水量⇒汚物の搬送性能で規定されている。

省エネ基準の変遷(節湯関連)


節湯水栓の定義


【出典】日本バルブ工業会ホームページ

(事例) 小流量吐水

エアインシャワー 「節水」と「心地よさ」を両立

「浴び心地」感の定量化により新技術を開発。水に気泡を含ませることで水滴の一粒一粒を大粒化。

エアインシャワー 流量:6.5L/分

※いずれも最適流量の場合

節水しながらも、たっぷりの浴び心地が体感できる 今までにない「新しいシャワー」

約35%の節水

(事例) 水優先吐水

従来のシングルレバー水栓

レバー中央部は「湯」と「水」の混合領域です。

湯水混合の範囲が広く、 よく使われるレバー中央部も混合領域なので、 不要な湯を無駄使いする事があります。

新技術

エコシングル水栓

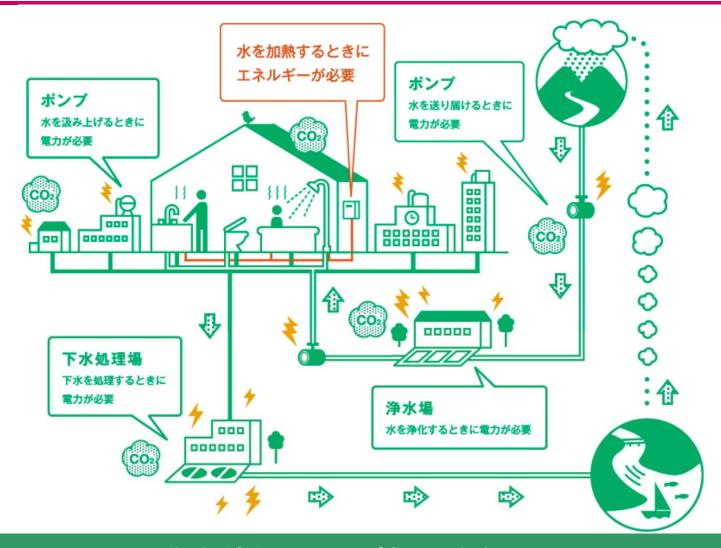
よく使われるレバー中央部までは「水」が出ます。

湯水の境目に「カチッ」と クリック感をもたせ、 必要な時のみ湯水を混合して 使う事ができます。

お湯のムダ使いを防いで給湯加熱のエネルギーを節約。

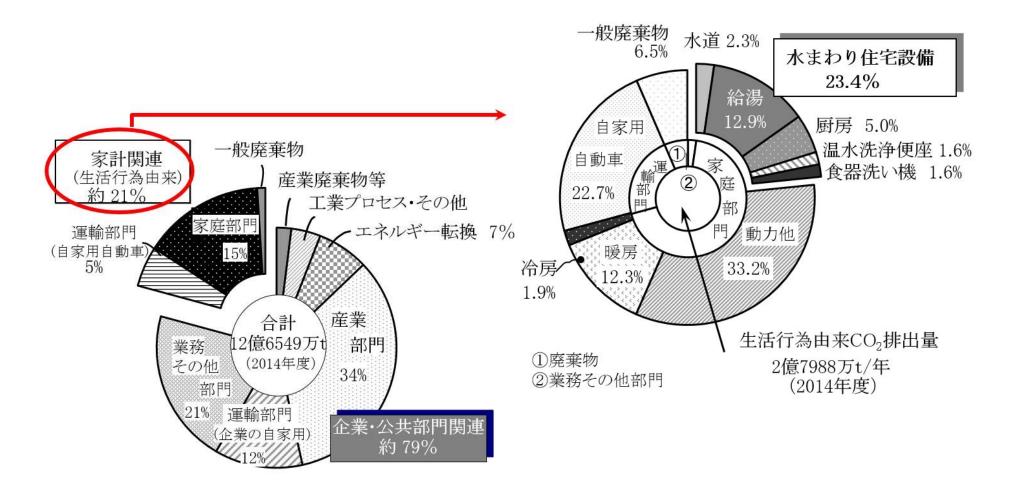
節湯水栓の定義

	基準名 住宅・建築物の省エネ基準		住宅事業建築主の判断の基準		
節湯	易水栓の定義	「住宅・建築物の省エネ基準」にて定められた節湯水 栓の構造を有するものまたは適合条件を満たすもの	(一社)日本バルブ工業会にて定められた節湯水栓 のモニター方法にて、削減基準を満たしているもの		
節湯種類と効果	手元止水 機構	節湯 A1 台所水栓:9%削減 浴室シャワー水栓:20%削減	節湯 A 台所水栓:9%削減 浴室シャワー水栓:20%削減		
	小流量吐水 機構	節湯 B1 浴室シャワー水栓:15%削減	節湯 台所水栓:17%削減 浴室シャワー水栓:15%削減		
	水優先吐水機構	節湯 C1 台所水栓:30%削減 洗面水栓:30%削減			
		節湯 A1 節湯 B1 浴室シャワー水栓:32%削減	節湯 台所水栓:24%削減 AB 浴室シャワー水栓:32%削減		
	節湯種類組合わせ	節湯 A1 C1 台所水栓:36%削減			
		節湯 C1 節湯 B 台所水栓:41%削減	節湯 A1 C1 節湯 AB 白所水栓:47%削減		


目次

1. 日本の水資源・水使用量

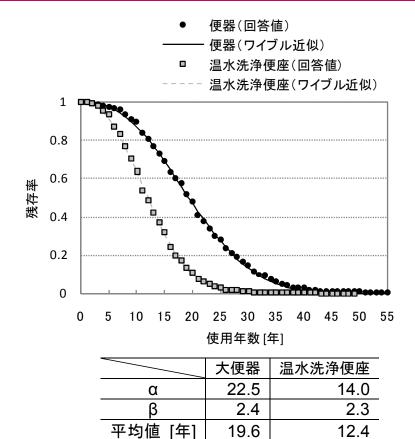
2. 水まわり設備の節水化


3. 水まわりからCO2削減

水とCO2の関係

水を使うとCO2が排出される。 = 節水・節湯がCO2削減に繋がる。

日本の部門別CO2排出量(2014年度)

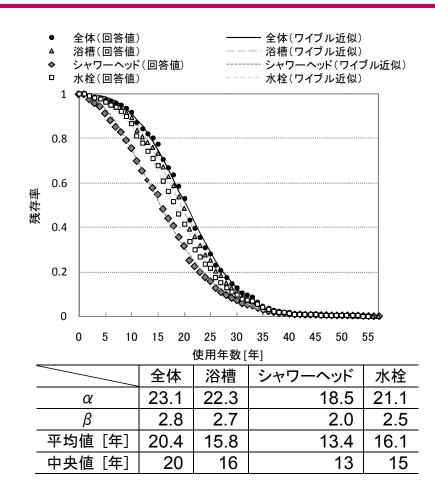

【出典】国立環境研究所温室効果ガスインベントリオフィス:日本の温室効果ガス排出量データ(2014年度確報値)

家庭の水まわり住宅設備からの排出されるCO2は、 日本全体からみても大きな量を占めている。

(調査事例)水まわり機器の買い替え頻度

12.4

11

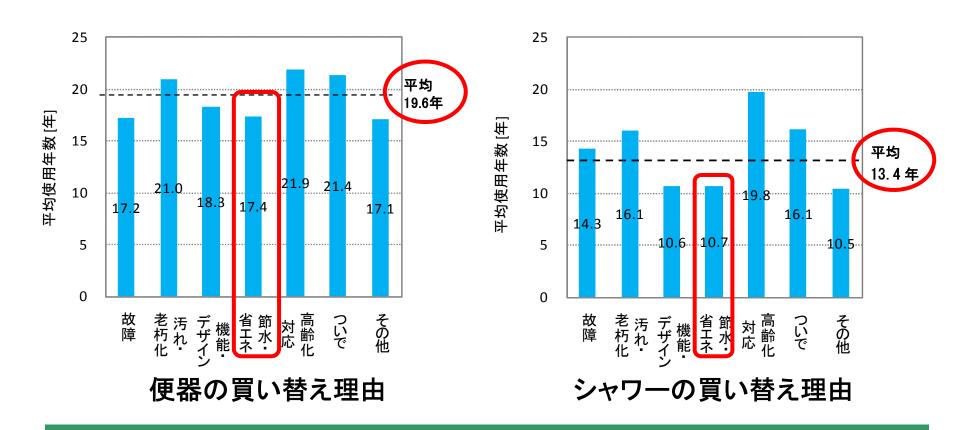


トイレの市場残存率分布

19.6

19

中央値「年

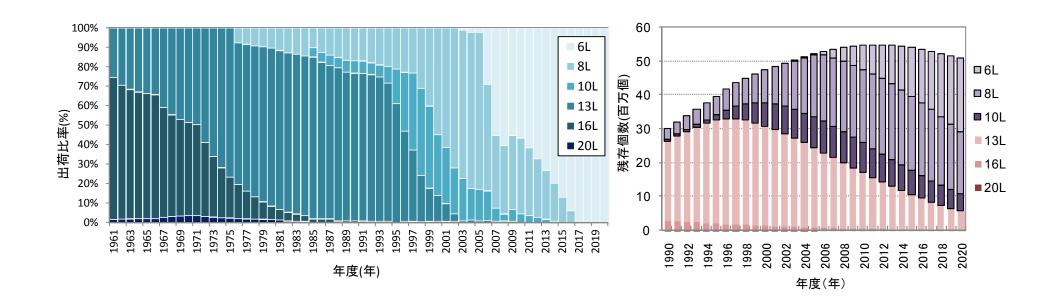


浴室の市場残存率分布

水まわり住宅設備機器の平均使用年数:12~20年程度

【出典】豊貞、出嶋、小代、清水:水まわり住宅設備機器の使用期間調査、空気調和・衛生工学会論文集、No.172、2011.7

(調査事例)水まわり機器の買い替え頻度


「節水・省エネ」を目的とした人は、 平均より2年早く買い替えている。 ⇒「節水」機器普及施策が、買い替えを促進させる可能性あり。

【出典】豊貞、出嶋、小代、清水:水まわり住宅設備機器の使用期間調査、空気調和・衛生工学会論文集、No.172、2011.7

(調査事例) 既設便器の平均洗浄水量推定

住宅用大便器の洗浄水量別出荷比率の推定

住宅における便器残存個数の推定

洗浄水量別便器出荷個数と、市場残存率分布より、 既設便器の平均洗浄水量を推定した。

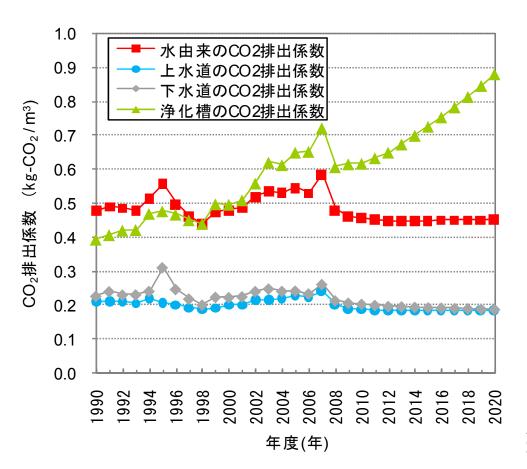
【出典】豊貞,清水,飯尾,坂上: .節水便器普及による環境負荷削減効果の定量化研究,空気調和・衛生工学会論文集, No.193, 2013.4

(調査事例)自宅におけるトイレ使用モデルの標準化

在宅人口=総人口-(就業人口+就学人口) としてモデル化

日本の人口構成(平成17年実績)

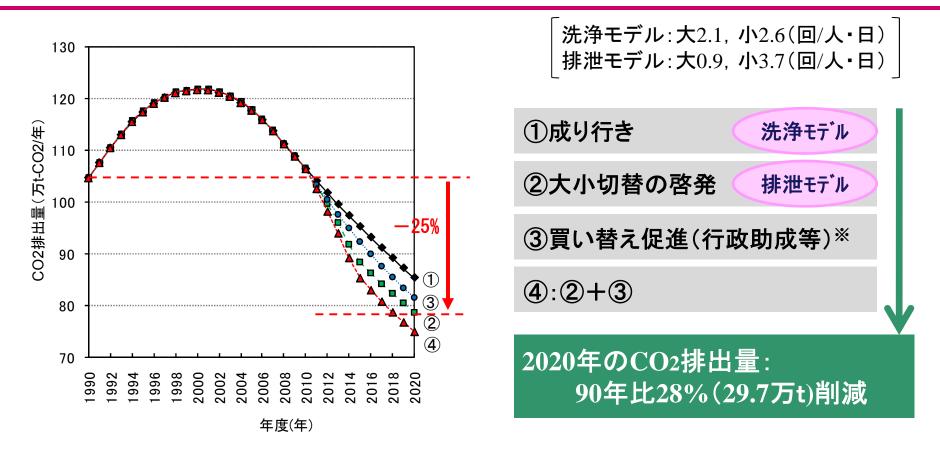
人口種類	人口(人)	備考
総人口(a)	127,767,994	平成17年国勢調査
就業人口(b)	61,505,973	平成17年国勢調査
就学人口(c)	20,367,965	平成18年版青少年白書
在宅人口	45,894,056	a-(b+c)


在宅時間による排泄・洗浄回数の標準化[回/(人・日)] タ全側デフォルト値

区分	自宅内 排泄大	自宅内 排泄小	自宅内 洗浄大	自宅内 洗浄小	
就業(会社員)	0.8	2.7	1.5	2.0	1
就学(生徒•学生)	0.9	2.8	1.7	2.0	人口比で按分
在宅(専業主婦)	1.0	5.5	3.2	3.7	
標準モデル	0.9	3.7	2.1	2.6	デフォルト値

【出典】豊貞,清水,飯尾,坂上:.節水便器普及による環境負荷削減効果の定量化研究,空気調和・衛生工学会論文集,No.193,2013.4

自宅内排泄モデル:大0.9回、小3.7回/(人・日) 自宅内洗浄モデル:大2.1回、小2.6回/(人・日)


(調査事例)水のCO₂排出係数推移予測

【出典】豊貞、出嶋、清水: 水まわり住宅設備機器由来CO2排出係数の推定、 空気調和・衛生工学会論文集, No.176, 2011.11

水由来CO₂排出係数は電力CO₂排出係数の変動の影響を大きく受け、1990年 から2020年の間で0.44~0.59 kg-CO₂/m³まで推移すると試算された。 ※ただし、2011年以降の原発停止は見込んでいない試算

(調査事例)便器洗浄水量由来CO2排出量の将来予測

※買い替え促進:平均買替えスパンが2年短縮されると想定。(既往研究結果より)

買い替え促進施策と節水啓発が実施されれば、便器洗浄水 由来のCO2排出量は、1990年比25%以上削減可能。